

301 Mission St Perimeter Pile Upgrade

Calculations

Vol 4 – Details

301 Mission Street San Francisco, CA

29 November 2018

SGH Project 147041.10

PREPARED FOR:

Millennium Tower Association 301 Mission Street Level B-1 San Francisco, CA 94103

PREPARED BY:

Simpson Gumpertz & Heger Inc. 100 Pine Street, Suite 1600 San Francisco, CA 94111 Tel: 415.495.3700 Fax: 415.495.3550

> Boston Chicago Houston New York San Francisco Southern California Washington, DC

Design, Investigate, and Rehabilitate

www.sgh.com

TABLE OF CONTENTS

1.	DES	IGN OF PILES	1
	1.1	Pile Axial Load Design	1
	1.2	Tension Rod and Jacking Design	2
	1.3	Axial Deformation	2
	1.4	Pile Response to Lateral Demands	3
2.	DET	AILED ANALYSES OF JACKING BEAM	6
	2.1	Model Description	6
	2.2	Material	11
	2.3	Elements and Mesh Size	11
	2.4	Contact	11
	2.5	Boundary Condition	11
	2.6	Loading	12
	2.7	Analyses and Results	13
3.	CON	NECTION CALCUALTIONS BETWEEN EXISTING AND NEW PI	LE CAP
	SEC	ΓIONS	16
	3.1	Bottom Reinforcement	16
	3.2	Top Reinforcement	50
4.	PILE	JACKING VAULT DESIGN CALCULATIONS	54
	4.1	Calculations	54

1. DESIGN OF PILES

1.1 Pile Axial Load Design

The piles include 24-inch diameter casing, extending through the upper soils to the top of the weathered Franciscan Formation. Below the casing, the piles are reduced in diameter to 20 inches for the rock socket.

The pile geotechnical and structural axial-load capacity is documented in the spreadsheet calculations below. We have designed the rock sockets of the retrofit piles to sustain an allowable load of 800 kips. We have not considered any resistance coming from the cased section of the piles above the rock surface.

1.2 Tension Rod and Jacking Design

The load is imparted to the piles through flat jacks. jacking beams and tension rod "fuses." The tension rods are intended to yield as the building continues to settle over time, while protecting the piles from excessive loading, which would be detrimental to the existing mat foundation. Strain in the tension rods is limited to 5% at a maximum settlement of 8 inches. This results in a rod length of 160 inches.

We have designed the jacking beam to sustain the strain-hardened load in the tension rods, based on the specified maximum stress of 70 ksi at 5% strain.

	Jacking Beam			
Shape	W24x207			
S	531	in^3		
Aw	22.36	in^2		
Z	606	in^3		
Moment of I	6820	in^4		
Fy_	50	ksi; A992		
Span	4.00	ft.		
0.9SxFy	1991	kip-ft		
Moment	1113	kip-ft @ strain-hardened load; DCR=	56%	25.16 ksi
0.6FyAw	671	kips		
Shear	557	kips @ strain-hardened load; DCR=	83%	24.90 ksi
Cubic Interaction:	91%			
Deflection	0.05	in. @ jacking load		
Stiffness	16424	kips/in		

Section 2 includes a more detailed analysis of the jacking beam, including the stiffeners, flange extension plates and welds.

1.3 Axial Deformation

We have computed the axial deformation of the pile and the tension rods, along with the flexural and shear deformation of the jacking beam, in order to understand the stroke of the flat-jacks required to load the piles to 800 kips.

Ax	ial Shortening	3	_
AE Fuse Rods	461,225	k	
AE center bar	116,000	k	
AE conc	1,816,748	k	
AE casing	1,081,886	k	
AE conc in rock	1,369,416	k	_
			-
Element	Length (ft)	Deformation (in)	_
Jacking Beam		0.05	(flexural and shear deformation)
Fuse Rods	13.3	0.28	based on 160 inches required to accommodate 8 inches of settlement
Cased	235.6	0.75	includes fuse rod length in mat and above, minus the beam depth of 2 feet
Rock Socket	33.00	0.11	presuming load shedding through the rock socket (1/2 length effective)
SUM		1.13	

1.4 Pile Response to Lateral Demands

The piles are designed to sustain a lateral deflection of 6 inches. At this deformation, we have shown through LPILE analyses that a plastic hinge will form at the bottom of the mat, but that another hinge will not form at depth. We have modeled the cased pile in XTRACT in order to determine the moment-curvature behavior.

ection Details:		
Centroid:	1148E-3 in	
Centroid:	5535E-15 in	A CANADA A C
ction Area:	451.2 in^2	
gross about X:	1.34E+8 kip-in^2	
gross about Y:	1.34E+8 kip-in^2	
ans (6 ksi) about X:	30.28E+3 in^4	
ans (6 ksi) about Y:	30.28E+3 in^4	<u>Nananananan</u>
inforcing Bar Area:	4.000 in^2	MAXXAN + XXAN
rcent Longitudinal Steel:	.8865 %	<u> </u>
erall Width:	23.95 in	
erall Height:	24.00 in	
mber of Fibers:	476	NARARAR NA
mber of Bars:	1	NAMANAN
mber of Materials:	3	and the second s

Strain Hardening Steel:	A252 Gr2
-------------------------	----------

🔲 6 ksi

A615 Gr.80

Comments:

Confined Concrete:

Strain Hardening Steel:

Section Type: Enclosed Composite Outside Diameter: 24.00 in Stell Shell Thickness: 0.5 in Cover Inclucing Shell: 10.875 in Number of Longitudinal Bars: 1 Longitudinal Bar Size: #18 Column Core Concrete: 6 ksi Longitudinal Steel: A615 Gr.80 Shell Steel: A252 Gr2

XTRACT Analysis Report

24x0.5 A252 Gr 2 Section Name: Loading Name: 800 Analysis Type: Moment Curvature

Section Details:

X Centroid: Y Centroid: Section Area:

Loading Details:

Constant Load - P: Incrementing Loads: Number of Points: Analysis Strategy:

Analysis Results:

Failing Material: Failure Strain: Curvature at Initial Load: Curvature at First Yield: Ultimate Curvature: Moment at First Yield: Ultimate Moment: Centroid Strain at Yield: Centroid Strain at Ultimate: N.A. at First Yield: N.A. at Ultimate: Energy per Length: Effective Yield Curvature: Effective Yield Moment: 1.401 Over Strength Factor: Plastic Rotation Capacity: 57.76E-3 rad EI Effective: 1.11E+8 kip-in^2 Yield EI Effective: 2.851E+6 kip-in^2 Bilinear Harding Slope: 2.574 % Curvature Ductility: 16.58

Mxx Only 30 Displacement Control 6 ksi 20.00E-3 Compression .3435E-14 1/in 84.33E-6 1/in 2.561E-3 1/in 9341 kip-in 23.98E+3 kip-in .2117E-3 Comp 8.065E-3 Ten -2.510 in 3.149 in 50.78 kips .1545E-3 1/in 17.12E+3 kip-in

-.1148E-3 in

-.5535E-15 in

451.2 in^2

800.0 kips

Simpson Cumpertz & Heger Inc.

Simpson Gumpertz & Heger Inc.

10/4/2018

301 Mission

Retrofit Piles

Comments:

User Comments

The following plots from LIPILE show the behavior of the pile, with a flexural yield value of 16,700 kip-inches.

There is no plastic hinge formation at depth. The following extract from the LPILE output indicates the behavior of the top of the pile:

Pile-head c Displacemen Rotation of Axial load	onditions a t of pile h pile head on pile hea	re Displacem ead d	ment and Pi	le-head Rot	ation (Load = 6.000 = 0.000E = 80000	ling Type 5) 0000 inches +00 radians 00.0 lbs			
Depth X feet	Deflect. y inches	Bending Moment in-lbs	Shear Force lbs	Slope S radians	Total Stress psi*	Bending Stiffness in-lb^2	Soil Res. p lb/inch	Soil Spr. Es*h lb/inch	Distrib. Lat. Load lb/inch
0.00	6.0000	-1.67E+07	176115.	0.00	14073.	1.22E+10	-252.9034	606.9682	0.00
2.4000	5.4313	-1.17E+07	152649.	-0.02127	10405.	1.11E+11	-308.4805	1636.	0.00
4.8000	4.7749	-6927471.	143070.	-0.02369	6873.	1.11E+11	-356.6699	2151.	0.00
7.2000	4.0668	-2388491.	132231.	-0.02490	3528.	1.11E+11	-396.0543	2805.	0.00
9.6000	3.3409	1836263.	120405.	-0.02497	3121.	1.11E+11	-425.2175	3666.	0.00
12.0000	2.6287	5697348.	107907.	-0.02399	5966.	1.11E+11	-442.6760	4850.	0.00

The slope change in the top increment is 0.0217 radians. Considering a hinge length equal to the pile diameter (24 inches) leads to a curvature of 0.0217/24 = 0.001, clearly within the acceptable range of curvatures indicated above.

2. DETAILED ANALYSES OF JACKING BEAM

2.1 Model Description

Figure 2-1 shows a section view at the jack while as Figure 2-2 shows the jacking detail (both adopted from our structural drawing: S502 Detail 1 and 2, respectively).

Figure 2-1: Section at Jack

Figure 2-2: Jacking Detail

In order to check adequacy of the jacking beam to resist the jack load, we conducted Finite Element Analysis (FEA) using ABAQUS/CAE 6.14-1. The W24x207 beam, the $1\frac{9}{16}$ inch thick extension plates, the ³/₄ inch stiffener plates and the 7/16 inch fillet welds connecting the stiffeners to the beam flanges and web were all explicitly modeled. Figure 2-3 shows Isometric view of the model while as Figure 2-4 shows the side view of the model.

Figure 2-3: Isometric View of the Jacking Beam Modeled in ABAQUS

Figure 2-4: Side View of the Jacking Beam Modeled in ABAQUS

Note that the extension plates were fully tied to the beam flange in FEA.

Following the recommendations by ANSI/AISC 360-10 (Commentary Chapter J, Section 10.8), we stopped the welding at a distance 2 inch away from face of the beam flange for vertical welds and face of the beam web for horizontal welds (2 inch and not 1.8125 inch was used for simplicity and conservatism). This recommendation is to avoid contact with "k-area". See Figure 2-5 and Figure 2-6.

Also the three interior stiffener plates were conservatively tapered straight from beam top flange to the extension plate at the beam bottom flange.

Figure 2-5: Recommended Placement of Stiffener Fillet Welds to Avoid Contact With "karea" (ANSI/AISC 360-10 (Commentary Chapter J, Section 10.8))

Figure 2-6: 2 inch Distance Modeled for Placement of Weld in FEA

2.2 Material

Typical steel properties (E = 29,000 ksi and v = 0.3) were used in the model to describe elastic material characteristics. Yield stress for the beam and plates was specified to be 50 ksi (ASTM A992 for the beam, and ASTM A572 Gr. 50 for plates). Yield stress of 70 ksi was specified for weld material.

2.3 Elements and Mesh Size

We built the model using solid elements. The element types were: C3D8R (An 8-node linear brick, reduced integration, hourglass control). We used 0.4 inch mesh size.

2.4 Contact

Surface-to-surface contact (standard) was specified for the interaction between stiffener plates, beam and weld.

2.5 Boundary Condition

Pinned support was modeled on the beam top flange (top surface) at 4 locations (where threaded rods are). See Figure 2-7.

Figure 2-7: Boundary Condition

2.6 Loading

2.93 ksi upward pressure was applied to represent the flatjack load (on a 22 inch circular surface). See Figure 2-8.

Figure 2-8: Loading

2.7 Analyses and Results

Analysis was conducted in a force-controlled manner. Table 1 shows the reaction forces at the four pinned supports. The values are very close and the flatjack load is evenly resisted by them.

Supports	Vertical Reaction (kips)
BC1	280.0
BC 2	278.4
BC 3	278.4
BC 4	278.0

Table 1 – Reaction Results

Figure 2-9 shows the stress contours on the beam. There was negligible amount of yielding which was mainly localized and it was due to stress concentration around the weld or under the pinned supports. The analysis therefore proved the adequacy of the beam, stiffeners and welds.

Figure 2-9: Stress Contours

3. CONNECTION CALCULATIONS BETWEEN EXISTING AND NEW PILE CAP SECTIONS

3.1 Bottom Reinforcement

anvir 3C			PROJECT NO. 14	7041.10-301S
	and Building Enclosures		DATE 10/01	/2018
OR	MISSION STREET DEVELOPMENT PAR	TNERS, LLC	BY ERM	Carthy
UBJECT	DESIGN CALCULATIONS - CONNECTIO	ON BETWEEN NEW AND EXISTING PILE CA	P CHECKED BY	SEB
Objecti The exi extension additior pile cap mats. Loads All loads All loads C. Ca 3. De 4. De 5. Ma 6. Ma 7. PE 8. Sa 9. Sin 10. Sim Pro	DESIGN CALCULATIONS – CONNECTION Design of Co ive sting 10ft thick pile cap along the north on. The concrete mat extension acts a cing in the concrete mat extension acts a cong the northwest edges of the exis s generated in SAFE and PERFORM ifornia Building Code, 2016 simone Consulting Engineers, Structu istmone Consulting Engineers, Structu ittock et al. (1974) ittock (1976) ER TBI, May 2017 n Francisco Building Code npson Gumpertz & Heger, 50% Desig eets: S000 - S502, dated 08/01/18. npson Gumpertz & Heger, Basis of De oject, dated 08/13/2018.	DN BETWEEN NEW AND EXISTING PILE CA	<u>checked by</u> <u>checke</u>	

Engin	eering of Structures			PROJECT NO. <u>147041.10-301</u>
	Juilding Enclosures			DATE 10/01/2018
SUBJECT DESIGN CALC	LATIONS - CONNECTION	NERS, LLC	AND EXISTING PILE CAP	
BESIGN CALCO		DETWEENNEM		SECRED DI SED
INPUTS				
Concrete compress	ive strength (new)	$f_{cn} := 7000p$	si	
Concrete compress	ive strength (old)	f' _{co} := 7000p	si	
Unit weight of concr	ete	$\gamma_c := 145 \text{pcf}$		
Reinforcing steel yie friction calculation)	ld strength (shear	f _{yv} := 60ksi	ACI 318-14 Table 20.2.2 Friction"	.4.a fy maximum for "Shear
Reinforcing steel yie (flexure/axial)	ld strength	f _{yf} := 75ksi	ACI 318-14 Table 20.2.2 Friction"	.4.a fy maximum for "Shear
Minimum clear cover:	Face of pile cap	$cc_{fb} := 2in$	Bottom of (E) pile cap	cc _{pe} := 13in
	Top of pile cap	$cc_{ft} := 2in$	Bottom of (N) pile cap	$cc_{pn} := 3in$
NEW PILE DIMENSION	<u>s</u>			
Spacing of new pile	S	spa _{npw} := 4.6	$3ft$ $spa_{npn} := 4.76ft$	dia _{mext} := 26in
LOAD FACTOR - Table	21.2.1 ACI 318-14			
Strength reduction f	actor (shear)	$\phi_v := 0.75$	Strength reduction factor (bearing) $\varphi_b := 0.65$
Strength reduction f	actor (flexure)	$\phi_f := 0.90$		
MAT FOUNDATION DIM	IENSIONS			
Full height of pile ca	p (new & existing)	$h_m := 10ft$		
Height of vertical ma	nting face 1	$h_1 := 5ft + 1$	lin	
Height of vertical ma	ating face 2	$h_2 := 4ft + 1$	in - 2ft = 2.1 ft	
JACKING FORCE				
Applied jacking force	e	P _a := 800kip		
Design jacking force)	P _d := 1200kij	2	
Safety factor in design multiplied by this fac shear demands on extension)	gn (SAFE loads are tor when assessing the pile cap	$SF := \frac{P_d}{P_a} = 1$.5	
UNITER (
	77		0 -6 0.4	

Engineering of S	tructures			DATE	10/0	1/2010
OR MISSION STREET DEVEL	OPMENT PARTNERS			DATE_	ERM	Carthy
UBJECT DESIGN CALCULATIONS -	- CONNECTION BETW	EEN NEW AND E	XISTING PILE CAI	P CHECK	ED BY	SEB
e moment demands used in this a ds.These are shown visually belo e maximum moment and shear lo sting pile cap, as noted in the belo iximum loads between the new p tween 19-28ft wide, therefore to o	analysis come from S ow. bads used to check th ow figures. Each des iles (4.7ft c-c) the der determine maximum	GH's SAFE and the design of the ign strip on the v nands are scale loads between t	lysis considering pile cap extensio vest is 25ft wide, d by 4.7ft/25ft. E ne new piles (4.9	wind, seismic and on are taken at the therefore to deter ach design strip o off c-c) the demand	d service e face of t mine n the nort ds are sca	he h is aled by
indesign suip waan.	00 0	344 6	(7.1)(80)(9.2)(9.7)	(10)(10,5)(11)(12)		
27676 kip*ft		NEW NOS	DH IIII		0	
27070 Kip It	- Italia takat				8	
		1	Statistics.			25 FT., TYP.
27414 kip*ft					- 8	
	Villerit	2		4		
29193 kip*ft					©	
$\langle \rangle$	11.1.2.1.1.4			1 4 4 4 4		
				2 1 1	(0)	
27758 kip*ft				a l		
	11444			1 4 4 4		
	ALL THE	4	25	-		
25127 kip*ft		111	and a second sec			
*wind governed					0	
	111111	1 Barris	111		(F)	
21892 kip*ft	I TH T T	5		11111		
					(G.A)	
	ALL PROPERTY.	Total Con				
					0	
		- Init/-		1 1 1 1		

Simpson Gumpertz & Heger Inc.

Page 3 of 34

2018-10-18 Design Verification between

SIMPSON GUMPERIZ &	HEGER				PROJECT	NO. <u>147041.10-3</u>
and Build	ding Enclosures				DATE	10/01/2018
FOR MISSION STREET	DEVELOPMENT PARTNER	S, LLC			BY	ERMcCarthy
SUBJECT DESIGN CALCULA	TIONS - CONNECTION BE	TWEEN NEW AN	D EXISTING PILE CA	>	CHECKED	BY SEB
4 Shear load	Lond V Ubl	Canasity J V. (lb)	Itilization 9 = V // V	Status		
Steel Strength*	33,400	39,624	85	OK		
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A		
Pryout Strength (Concrete Breakor Strength controls)**	ut 33,400	49,665	68	OK		
Concrete edge failure in direction y	/+** 33,400	34,655	97	OK		
* anchor having the highest loading	g **anchor group (relevant anchors)					
4.1 Steel Strength	100 FD FDD 3814					
	18-08 Eq. (D-2)					
Variables						
A _{se,V} [in. ²] f _{ute} [psi]						
1.27 80,000 Calculations						
V _{sa} [lb]						
60,960						
Results V., libi	é V., [[b] V. n	ы				
60,960 0.650	39,624 33,40	00				
hosedel i Valet. Proof: Stand-off Installation: Profile: Base material Installation:	Distance in 11/2019 Uni2019 Design method ACI 318-08 / Chem. - (Becommended pilate Netheres: net calculate opolie calculat	død) 20.000 in. Temp. skottlang : in Dry	10/12 %			
Rankscarwer.	Nersion: condition B, shear: condition B; no s edge reinforcement: >= No. 4 bar	ritter and stranged in second	niert present.			
Seturnic loads (cal. C. D. E. or #)	R0					
Geometry (in.) & Loading (ib. in.ib)						
	9					
	0					
			¥			
-	u.	2 39.400				
		Ð				
1						
		2				
		1				

Engineering of Structures			PROJECT	NO. <u>147041.10-30</u>
and Building Enclosures			DATE	10/01/2018
R MISSION STREET DEVELOPMENT	PARTNERS, LLC		BY	ERMCCarthy
	SHOUDEINEENNE			
4 Shear load			48. 	
Stool Strength*	Load V _{ua} [lb]	Capacity V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)**	39,400	82,775	48	ок
Concrete edge failure in direction **	N/A	N/A	N/A	N/A
* anchor having the highest loading **anchor	r group (relevant anchor	s)		
4.1 Steel Strength				
	SR-3814)-2)			
Variables				
A _{se,V} [in. ²] f _{uta} [psi]				
1.27 80,000				
V. Ibl				
60,960				
Results				
V _{sa} [lb] ¢ steel	φ V _{sa} [lb] V _u	, [lb]		
Capacity Ratio for 3 Layers of Reinforce	ement			
Full Capacity Reinforcement	$V_{Full3} := 39.62$	24kip 3 = 118.9 kip		
Reduced Capacity	$V_{Red3} := 34.65$	55kip 1 + 39.624kip 2	e = 113.9 kip	
Ratio of Reduced to Full Capacity	$R_3 := \frac{V_{Red3}}{V_{Full3}}$	= 0.96		
Capacity Ratio for 4 Layers of Reinforce	ement			
	V _{Full4} := 39.62	24kip∙4 = 158.5 kip		
Full Capacity Reinforcement			l = 148.6 kip	
Full Capacity Reinforcement Reduced Capacity	$V_{Red4} := 34.65$	$55 \text{kip} \cdot 2 + 39.624 \text{kip} \cdot 2$	S I S I S I S I P	
Full Capacity Reinforcement Reduced Capacity Ratio of Reduced to Full Capacity	$V_{\text{Red4}} := 34.63$ $R_4 := \frac{V_{\text{Red4}}}{V_{\text{Full4}}}$	= 0.94	,	

Simpson Gumpertz & Heger Inc.

Page 18 of 34

2018-10-18 Design Verification between

SIMPSON GUMPERTZ & HEGER		PROJECT NO. <u>147041.10-3015</u>
and Building Enclosures		DATE 10/01/2018
FOR MISSION STREET DEVELOPMENT PARTN	IERS, LLC	BY ERMcCarthy
SUBJECT DESIGN CALCULATIONS - CONNECTION	BETWEEN NEW AND EXISTING PILE CAP	CHECKED BY SEB
Spacing of shear reinforcement along length of cantilever "beam" between piles	$spa_{vhead} := \frac{96in}{5.333} = 18 \cdot in$	
Clear space between new pile casing	$spa_{clrnp} := spa_{npw} - dia_{mext} = 29.6$ in	
Shear reinforcing area (considering two legs)	$A_{vw} := \left[\frac{2 \cdot (1.41 \text{ in})^2 \cdot \pi}{4}\right] = 3.123 \text{ in}^2$ $A_{vw} := \left[\frac{2 \cdot (1.41 \text{ in})^2 \cdot \pi}{4}\right] = 3.123 \text{ in}^2$	
Minimum spacing between dowels	$A_{vn} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}^{-5.125 \text{ m}}$ $spa_{min} := 4 \cdot 1.41 \text{ in} = 5.6 \text{ in}$ $spa_{max} := -5.52 \text{ m}$	$\frac{A_{vw'} f_{yf}}{50 \text{psi} \text{ spa}_{clmp}} = 158.5 \text{ in}$
Length of "beam" section for shear	L _{vr} := 8ft	
Minimum shear reinforcement (ACI 9.6.3.3)	$A_{vminw} := max \left(0.75 \cdot \sqrt{psi \cdot f'_{cn}} \cdot \frac{L_{vf'} \cdot spa_{vhead}}{f_{yf}} \right),$	$\frac{50\text{psi-}L_{vr'}\text{spa}_{vhead}}{f_{yf}} \bigg) = 1.45 \cdot \text{in}^2$
	$A_{vminn} := max \Biggl(0.75 \cdot \sqrt{psi} \cdot f_{cn} \cdot \frac{L_{vr} \cdot spa_{vhead}}{f_{yf}} ,$	$\frac{50\text{psi}\cdot\text{L}_{vr}\cdot\text{spa}_{vhead}}{f_{vf}} \bigg) = 1.45\cdot\text{in}^2$
D dimension of the pile cap extension (assuming the full depth of the beam with tension reinforcement in the bottom of the pile cap)	$d_{sta11} := submatrix(d_b, 0, 5, 0, 0) = \begin{pmatrix} 102.8\\ 100.8\\ 104.4\\ 104.4\\ 100.8\\ 103.6 \end{pmatrix}$	maximum spacing for stirrups in spa _w := $\frac{d_{sta11}}{2} = \begin{pmatrix} 51.4 \\ 50.4 \\ 52.2 \\ 52.2 \\ 50.4 \\ 51.8 \end{pmatrix}$ in
	$d_{sta12} := submatrix(d_b, 6, 9, 0, 0) = \begin{pmatrix} 102.8\\ 102.8\\ 102.8\\ 102.8\\ 102.8 \end{pmatrix}$	$\begin{cases} \sin \\ \sin $
Shear strength from reinforcement (ACI 22.5.10.5.3)	$phiV_{sw} := \frac{\overline{\phi_{v} \cdot A_{vw'} \cdot f_{yf'} \cdot d_{stal1}}}{spa_{vhead}} = \begin{pmatrix} 1003.6\\ 983.7\\ 1018.8\\ 1018.8\\ 983.7\\ 1010.6 \end{pmatrix}$ ki	p
Simpson Gumpertz & Heger Inc.	Page 20 of 34 20	018-10-18 Design Verification betweer

Engineering of Structures		PROJECT NO. <u>147041.10-301</u>
FOR MISSION STREET DEVELOPMENT PA	ARTNERS, LLC	BY ERMcCarthy
SUBJECT DESIGN CALCULATIONS - CONNECT	TION BETWEEN NEW AND EXISTING PILE CAP	CHECKED BY SEB
	phiV _{c22} = $\begin{pmatrix} 359.6 \\ 426.3 \\ 426.3 \\ 359.6 \end{pmatrix}$ kip	
	$phiV_{c2} := stack(phiV_{c21}, phiV_{c22})$	
	(1 (1 (1))	(667.6)
		654.4
Shear strength from concrete West (ACI 318-14 Table 22.5.5.1)	$phiV_{c31} := 3.5\sqrt{\Gamma_{cn}, psi} (spa_{clrnp}, d_{stal})$	$ _{1} \cdot \varphi_{v} \Big) = \left \begin{array}{c} 677.8 \\ 677.8 \\ 654.4 \end{array} \right kip $
		(672.3)
		(667.6)
Shear strength from concrete North (ACI 318-14 Table 22.5.5.1)	$phiV_{c32} := 3.5\sqrt{f_{cn} \cdot psi} \left(spa_{clrmp} \cdot d_{stal}\right)$	$_{2} \cdot \Phi_{v} = \begin{vmatrix} 667.6 \\ 667.6 \\ 667.6 \end{vmatrix} kip \\ 667.6 \end{pmatrix}$
Shear strength from concrete West (deep beams)	$phiV_{c41} := \sqrt{f_{cn} \cdot psi} (spa_{clmp} \cdot d_{sta11} \cdot \phi)$	$ _{v}) = \begin{pmatrix} 190.8 \\ 187 \\ 193.6 \\ 193.6 \\ 187 \\ 192.1 \end{pmatrix} $
Shear strength from concrete North (deep beams)	$phiV_{c42} := \sqrt{f'_{cn'}psi} (spa_{clrnp'} d_{stal2'} \phi$	$(v_{\rm v}) = \begin{pmatrix} 190.8\\ 190.8\\ 190.8\\ 190.8 \end{pmatrix}$ kip

Mat Extension Shear Capacity Calculation

$$b_{mat} := 8 ft$$

$$d_{mat} := 120 in - 12 in - \frac{1.56 in}{2} = 8.9 ft$$
Deep Beam Shear Capacity Calculation
$$V_c := \sqrt{f'_{cn'} p_{Si'}} b_{mat'} d_{mat} = 861.2 \cdot kip$$
ACI 22.5
ACI 21.2

 $\phi_V := 0.75$

 $DCR(\phi_{V'}V_{c}, max(V_{uWest}, V_{uNorth})) = (0.5 \text{ "OK"})$

Simpson Gumpertz & Heger Inc.

Page 34 of 34

2018-10-18 Design Verification between

3.2 Top Reinforcement

We designed the top reinforcement connecting the mat extension to the existing mat for MCElevel demands from our Perform-3d model.

Design of the top reinforcement is governed by pile head moments due to displacement of the tower towards the mat extension, coinciding with seismic uplift on the piles. We conservatively calculated seismic uplift based on results of applying the 11 spectrally matched ENGEO ground motions to the pinned-base PERFORM-3D model. For each rock pile, we determined the minimum compression due to each of the 11 ground motions. The minimum mean compression among the 52 rock piles is 521 kip.

We assumed the new piles may unload by as much as 200 kip due to rebound. We therefore designed the mat extension reinforcement for a conservative minimum long-term static axial load of 600 kip.

P _D	= =	Minimum long-term rock pile axial compression 600 kip
P _{EQ}	= = =	Pile uplift due to the MCE 800 kip – 521 kip 279 kip
P _{pile}	= = =	Governing pile axial demand $P_D - P_{EQ}$ 321 kip (compression)

We designed for the expected yield moment of the rock piles. We used XTRACT, version 3.0.7 to compute the rock pile yield moment considering expected material strength properties.

 $M_{pile} =$ Expected pile yield moment = 35,000 kip-in.

Forces at the pile head induce moment on the mat extension. Tension in the top dowels resolves the applied moment demands, as shown in Figure 3-1.

e.v=	120 in 1	5 in 15 ir	n 6 in.	Take moments about the bottom rebar height
=	84	in.		where pile shear is resolved
e.h =	48	in.		Offset of pile center from extension interface
				· · · · · · · · · · · · · · · · · · ·
P.pile =	521 - 200			Avg. minimum pile axial load
=	321	kip		
	25000	Lin in		
w.piie =	35000	кıр-ın.		Plie moment capacity
T.s =	(M.pile -	P.pile * e.l	h)/e.v	Top dowel tension
=	233	kip	(per pile)	

Six #7 Gr. 60 bars between each new rock pile are adequate for the demands at the mat extension interface. Calculations below verify this design and compute required embedment of the new rebar based on the lap splice requirements of ACI 318-14 Chapter 25. Rebar development is illustrated in Figure 3-2.

f.y =	69	ksi	Expected steel yield strength
A.s =	T.s / f.y		Required steel area
=	3.38	in^2	
bar size =	7]	
A.bar =	0.60	in^2	
n.bars	6		
A.s =	3.6	in^2	Provided steel area
Available space =	55 in 24	in 1.5 in.	
=	29.5	in.	
Bar Spacing =	5.9	in.	

Lap Length Requirements

f.pc = 9.1 ksi Expected concrete compressive strength New Bars λ= 1 ψ.t = Top bar factor (ψ .t) not required for lap splice development 1 ψ.s = 1 of post-installed bar, per Section 3.1.14.1 of HILTI North ψ.e = 1 American Product Technical Guide , Volume 2, Edition 17. d.b =0.875 in. min cover = 12 in. Spacing = 5.90 in. c.b= 2.95 in. K.tr = 0 in^2 (c.b + K.tr) / d.b =3.37 (use 2.5) L.d.7 = $(3/40) * (f.y / fpc^{0.5}) * [\psi.t * \psi.s * \psi.e / (\lambda * (c.b+K.tr) / d.b)] * d.b$ 19.0 in. (ACI 318-14 Eq. 25.4.2.3a) L.st.7 = 1.3 * L.d.7 = 24.7 in. Existing #11 Bars #11 bar diameter d.b = 1.41 in. L.dh.11 = 0.02 * (fy / (fpc)^0.5) * d.b Hook development length for #11 bar yield strength

(ACI 318-14 Equation 25.4.3.1)

20.4

26.4

=

6 in. + L.dh.11 =

in.

in.

Development of the existing #11 hooked bars governs the required embedment of the new rebar. Shop drawings show 2 in. clear cover to the existing mat reinforcement. The new epoxy rebar should therefore be embedded a total length of 29 in. into the existing mat.

Figure 3-2 – Mat Extension Top Reinforcement Development

4. PILE JACKING VAULT DESIGN CALCULATIONS

4.1 Calculations

itle: Jacking Va References: A0 50 Co	ult Reinford	ed Concrete Desig	15		
References: A0 50 Co	CI 318-14, 301		n		
Ca W	ACI 318-14, 301 Mission Perimeter Pile Upgrade Design Drawings, ESR 3814 "Hilti Hit-RE 500 V3 Adhesive and Post-installed Reinforcing Bar Connections in Cracked and Uncracked Concrete, Geotechnical Evaluation for the Perimeter Pile Upgrade, Millennium Tower, City and County of San Francisco, CA, by John Egan, GE, Slate Geotechnical Consultants, Inc., and Shannon & Wilson, Inc., dated 10/31/18				
Description: Re	einforced concr	ete design of the jacking	vault above the mat ex	xtension	
Material Propertie	<u>s</u>				
Compressive Stren	ngth of Concrete	e f _c := 4000psi			
Yield Strength of R	einforcement	f _y := 60ksi			
Unit Weight of Con	crete	$\gamma_c := 150 \text{pcf}$			
Total Unit Weight of	fBackfill	$\gamma_s := 130 \text{pcf}$			
Elastic Modulus of	Concrete	E:= 57000 v	$\overline{\mathbf{f}_{c}}$ psi = 3.605 × 10 ³ · 1	ksi	
From:		John Egan <johnaegan< td=""><td>13@gmail.com></td><td></td><td></td></johnaegan<>	13@gmail.com>		
Sent:		Monday, October 22, 2	018 1:50 PM		
10: CC		Lachezar Handzhivski: [ehra Murnhy: Sara F	Barrett: Andrew C 4	hopelbaum
Subject:		Re: FW: 2018-10-15 Pile	Jacking Vault Surcha	rge.pdf	pperoaum
Lachezar:					
Based on weigh Apparatus Man based on weigh range. So, I thir to be a bit more	nt and size of ufacturers As at and vehicle of that the 2 conservative	f typical fire/emerger ssociation (FAMA) g a footprint is about 2 feet * 130 pcf = 260 e, we can go with 3 f	icy response vehic uidelines), the larg 40 psf, with aerial psf I recommende ieet of equivalent f	cles that I found lest average stre ladder trucks in t d is adequate; h ïll.	(2017 Fire iss that I calculate the 150 to 175 psf owever, if we want
John					

2018-11-20 Jacking Vault Design.xmcd Page 2 of 27

2018-11-20 Jacking Vault Design.xmcd Page 3 of 27

SIMPSON GUMPERTZ & HEGER	SUBJECT: Pile Jacking Vault Design	PROJECT NO: DATE: BY: CHECKED BY:	140741.00 11/27/2018 SEB LVH
Design Longitudinal Reinforcement per Spa	n Adjacent to Manhole		
	b _{2.5} := 2.5ft		
	$w_{s2.5} := \gamma_s \cdot d_s \cdot b_{2.5} = 4.144 \text{ klf}$		
	$w_{d2.5} := \gamma_c \cdot b_{2.5} \cdot t_1 = 375 \cdot plf$		
	$w_{walk2.5} := \gamma_c \cdot b_{2.5} \cdot 3in = 93.75 \cdot plf$		
	$q_{s2.5} := q_s \cdot b_{2.5} = 500 \cdot \text{plf}$		
	$L_3 := 3.0 ft$		
Moment for strip on either side of manhole	$M_{ulong} := \frac{\left[1.2 \cdot \left(w_{walk2.5} + w_{d2.5}\right) + \right.}{8}$	$1.6(w_{s2.5} + q_{s2.5})$]	$\frac{L_3^2}{L_3} = 107.9$ kip in
Shear Loads	$V_{ulong} := \frac{\left[1.2 \cdot \left(w_{walk2.5} + w_{d2.5}\right) + 1\right]}{2}$	$.6 \left(w_{s2.5} + q_{s2.5} \right) \right]$	$\frac{L_3}{2} = 12 \cdot \text{kip}$
Design Loads - Vertical Wall			
Depth Below Level 1 for Top of Wall	$d_{s1} := 9.75 ft$		
Depth Below Level 1 for Bottom of Wall	$d_{s2} := d_{s1} + D_v = 15.75 \text{ft}$		
MCE Lateral Loads assume a 3.25 in. gr	ound displacement		
Reaction at Top of Wall for MCE	$p_{w1} := 1.59 \text{ksf}$	Slate Ge	otechnical Consultants,
Pressure at Bottom of Wall	$p_{w2} := 2.63 \text{ksf}$	Inc. and Report.	Shannon & Wilson, Inc.

2018-11-20 Jacking Vault Design.xmcd Page 5 of 27

2018-11-20 Jacking Vault Design.xmcd Page 6 of 27

Saved: 11/26/2018 11:19 AM Printed: 11/27/2018 11:10 AM

SIMPSON GUMPERTZ & HEGER	SUBJECT: Pile Jacking Vault Design	PROJECT NO: DATE: BY: CHECKED BY:	140741.00 11/27/2018 SEB LVH
Reinforced Concrete Member Capac	ity Calculations		
Flexural Resistance Factor	φ := 0.9	ACI 2	1.2
Shear Resistance Factor	$\phi_v := 0.75$	AGIZ	1.2
Normal Weight Concrete	$\lambda := 1.0$		
Top Slab			
Diameter and Area of No. 4 bar	d _{b4} := 0.5in A	$_{b4} := 0.2 in^2$	
Diameter and Area of No. 5 bar	d _{b5} := 0.625in A	$_{b5} := 0.31 in^2$	
Diameter and Area of No. 6 bar	d _{b6} := 0.75in A	$_{b6} := 0.44 \text{in}^2$	
Diameter and Area of No. 7 bar	d _{b7} := 0.875in A	$_{b7} := 0.6 in^2$	
Diameter and Area of No. 8 bar	d _{b8} := 1.0in A	$_{b8} := 0.79 \text{in}^2$	
Diameter and Area of No. 11 bar	d _{b11} := 1.41 in A	$_{b11} := 1.56 \text{in}^2$	
Distance from the extreme compression fiber to the center of bottom reinforcement steel	$d := t_1 - 1 \text{ in } - \frac{d_{b8}}{2} = 10.5 \cdot \text{ in}$		
	$A_s := (A_{b8}) \cdot 3 = 2.37 \cdot in^2$	Area of Bottom Fl Reinforcement	exural Transverse
	$a := \frac{A_{s'} f_y}{0.85 f_{c'} b} = 1.162$ in	F	ACI 22.2
Flexural Capacity of Bottom Reinf.	$M_{n_pos} := A_s \cdot f_{y'}\left(d - \frac{a}{2}\right) = 1.4 \times$	10 ³ ·kip·in	
Flexural Design to Capacity Ratio	$\text{DCR}(\phi M_{n_pos}, M_{uSlab}) = (0.74$	"OK")	
	$b_{w_{eff}} := \frac{11.14in}{12in} \cdot b = 2.785 ft$		
Shear Capacity	$V_c := 2 \cdot \lambda \cdot \sqrt{f_c \text{ psi}} b_{w_eff} d = 44.3$	9 kip A	ACI 22.5
Shear Design to Capacity Ratio	$\text{DCR}\left[\phi_{v'}(V_c), V_{uSlab}\right] = (1.01 \text{ "})$	NG")	

2018-11-20 Jacking Vault Design.xmcd Page 9 of 27

SIMPSON GUMPERTZ & HEGER	SUBJECT: Pile Jacking Vault Design	PROJECT NO: 140741.00 DATE: 11/27/2018 BY: SEB CHECKED BY: LVH
Deflection Check	$I_{slab} := \frac{(b) \cdot t_1^3}{12} = 0.25 \text{ ft}^4$ $\Delta := \frac{5 \cdot (w_s) \cdot B_v^4}{384 \cdot E \cdot I_{slab} \cdot 0.5} = 0.049 \text{ in}$	
Longitudinal Reinforcement Check	$d_{1} := t_{1} - 1 \operatorname{in} - d_{b8} - \frac{d_{b4}}{2} = 9.75 \operatorname{in}$ $d'_{1} := t_{1} - 2 \operatorname{in} - \left(d_{b8} - \frac{d_{b4}}{2}\right) = 9.25 \operatorname{in}$ $A_{s1} := \left(A_{b4}\right) \cdot 2 = 0.4 \operatorname{in}^{2}$	n
	$\begin{aligned} a_{l} &:= \frac{A_{sl'} f_{y}}{0.85 \cdot f_{c'} b_{2.5}} = 0.235 \text{ in} \\ M_{n_long} &:= A_{sl'} f_{y'} \left(d_{l} - \frac{a_{l}}{2} \right) = 231.2 \text{ k} \\ DCR(\phi \cdot M_{n_long}, M_{ulong}) = (0.52 \text{ "O} \\ V_{cl} &:= 2 \cdot \lambda \sqrt{f_{c'} \text{ psi}} b_{2.5'} d_{l} = 35.1 \text{ kip} \\ DCR[\phi_{v'}(V_{cl}), V_{ulong}] = (0.46 \text{ "OK'} \end{aligned}$	ACI 22.2 ip in K") ACI 22.5
Minimum Reinforcement needed for each face	$A_{min} := \frac{12 \text{in } t_1 \cdot 0.0018}{2} = 0.13 \cdot \text{in}^2$ Longitudinal Bars will be No. 5 @ 12 in	per foot of slab
[2018-11-20 Jacking Vault Design.xmcd Page 10 of 27	Simpson Gumpertz & Heger Saved: 11/26/2018 11:19 AM

- 63 -

Saved: 11/26/2018 11:19 AM Printed: 11/27/2018 11:10 AM

SIMPSON GUMPERTZ & HEGER Engineering of Structures and Building Enclosures	SUBJECT: Pile Jacking Vault Design	PROJECT NO: DATE: BY: CHECKED BY:	140741.00 11/27/2018 SEB LVH
Vault Wall	$A_{r} = A_{r} = 0.31 \text{ m}^2$		
	$d_{wNEG} := t_2 - 1in - \frac{d_{b5}}{2} = 10.688 \text{ in}$	$d_{wPOS} := t_2 -$	$1.5in - \frac{d_{b5}}{2} = 10.187 \cdot in$
	b _{w12IN} := 12in		
	$a_{w} := \frac{A_{sw} f_{y}}{0.85 \cdot f_{c'} b_{w12IN}} = 0.456 \text{ in}$		ACI 22.2
	$M_{nwNEG} := A_{sw} f_{y'} \left(d_{wNEG} - \frac{a_w}{2} \right) =$	194.5 kip in	
	$M_{nwPOS} := A_{sw} f_{y} \left(d_{wPOS} - \frac{a_{w}}{2} \right) =$	185.2 kip in	
	$DCR(\phi M_{nwNEG}, M_{uwNEG}) = (0.57)$ $DCR(\phi M_{nwPOS}, M_{uwPOS}) = (0.28)$	"OK") "OK")	
	$V_{cw} := 2 \cdot \lambda \cdot \sqrt{f_c \operatorname{psi}} \cdot b_{w12IN} \cdot d_{wPOS} =$	15.46 kip	ACI 21.5
	$DCR[\phi_{v'}(V_{cw}), V_{uw}] = (0.51 \text{ "OK"})$)	
	$A_{minLong} := \frac{t_2 \cdot 0.0018}{2} = 0.13 \cdot \frac{in^2}{ft}$	4@12in	
		. 4 @ 12 11.	
	2018-11-20 Jacking Vault Design.xmcd		Simpson Gumpertz & Heger

Page 11 of 27

Saved: 11/26/2018 11:19 AM Printed: 11/27/2018 11:10 AM

2018-11-20 Jacking Vault Design.xmcd Page 12 of 27

2018-11-20 Jacking Vault Design.xmcd Page 14 of 27

SUBJECT: Pile Jacking Vault Design	DATE: 11/27/2018 BY: SEB CHECKED BY: LVH
2. Shear Friction Check between Vault Wall and Mat Extension	
$\phi_a := 0.65$	ACI 21.2
f _{uta} := 80ksi	
$V_{sa} := 0.6 f_{uta} = 48 \cdot ksi$	
$V_{f} := (V_{sa} A_{b5} + V_{sa} A_{b7}) = 43.7 \cdot kip$	ACI 17.5
$DCR(\phi_{a} V_{f}, V_{uBottom}) = (0.271 "OK")$	
3. Shear Friction Check between Vault Wall and Vault Slab	
$DCR(\phi_{a}; V_{f}, V_{uTop}) = (0.224 \text{ "OK"})$	

2018-11-20 Jacking Vault Design.xmcd Page 15 of 27

SIMPSON GUMPERTZ & HEGER Engineering of Structures and Building Enclosures	SUBJECT: Pile Jacking Vault Design	PROJECT NO: DATE: BY: CHECKED BY:	140741.00 11/27/2018 SEB LVH
Chord Force Calculation			
Unfactored Distributed Load from Seismic LEP	$w_R = 6.37 \cdot klf$		
	$L_{ch} := 54 ft$		
	d _{ch} := 8ft		
	j := 0.85		
	$M_{ch} := \frac{w_{R} \cdot L_{ch}^{2}}{8} = 2.8 \times 10^{4} \cdot \text{kip} \cdot \text{in}$		
	$C_u := \frac{M_{ch}}{j \cdot d_{ch}} = 341.5 \text{ kip}$		
	$V_{ch} := \frac{w_{R} \cdot L_{ch}}{2} = 172 \cdot kip$		
	$A_{sCh} := A_{b11} \cdot 7 = 10.92 \cdot in^2$		
	$\phi_t := 0.9$		
	$T_n := 0.6 A_{sCh} f_y = 393.12 kip$		ACI 22.4
	$DCR(\phi_t T_n, C_u) = (0.97 \text{ "OK"})$		
Reinforcement Ratio of No. 6 at 12 in.	$ \rho_{\rm t} := \frac{0.44 {\rm in}^2}{{\rm d}\cdot 12 {\rm in}} = 3.492 \times 10^{-3} $		
	$\mathbf{V}_{nD} := \left(2 \cdot \sqrt{\mathbf{f}_{c} \cdot \mathbf{psi}} + \rho_{t} \cdot \mathbf{f}_{y}\right) \cdot \mathbf{t}_{1} \cdot 0.9 \cdot \mathbf{d}_{ch}$	= 348.38 kip	ACI 12.5.3.3
	$DCR(\phi_{v'}V_{nD},V_{ch}) = (0.658 \text{ "OK"})$)	
	2018 11 20 Jacking Vault Design ymod	1	Simpson Cumpartz & Hagar

2018-11-20 Jacking Vault Design.xmcd Page 16 of 27

IMPSON GUMPERTZ & HEGER	SUBJECT: Pile Ja	icking Vault Design	PROJECT NO: DATE: BY: CHECKED BY:	140741.00 11/27/2018 SEB LVH
4 Shear load			21	
4 Silear Ioau	Lood M. Phy	Our setting of the line of the	University a set of M	Status .
Steel Strength*	1.620	13.728	Utilization $\beta_V = V_{ua} \phi V_n$ 12	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout	1,620	24,734	7	OK
Strength controls)**				
Concrete edge failure in direction y+**	1,620	20,008	9	ОК
anchor having the highest loading an	chor group (relevant arichors	»)		
4.1 steel strengtn V _{sa} = ESR value refer to ICC-E ∳ V _{steel} ≥ V _{ua} ACI 318-08 Ec	S ESR-3814 a. (D-2)			
Metal Deck Selection Calculations				
A metal deck will be the formwork for following check determined what the above the metal deck.	the vault slab. For ca allowable clear spar	onstructability, the n for the deck was a	netal slab will be left in p acceptable considering	blace. The the extra 7.5 in.
Try PLW3, Gauge 18				VERCO Metal Deck Catalog
Self-weight of metal deck with 4.5 inches of concrete above the metal deck.	w _{PLW3} := 72.	5psf		
	$t_{addl} := t_1 - 4$.5in = 7.5 in		
Additional Weight of 7.5 inches of con	$w_{7.5Conc} := t_a$	_{ddf} 145pcf = 90.62	5-psf	
	Ratio := $\frac{W_{PL}}{W_{PL}}$	$\frac{W_3 + W_{7.5Conc}}{W_{PLW3}} = 2.$	25	
Determine equivalent length of span for the additional weight	$\mathbf{L}_{addl} := \sqrt{\left(\mathbf{B}_{\mathbf{v}}\right)^2}$	$(t_2 - t_2)^2$ Ratio = 10.	5 ft	
For Gauge 18, the Maximum Unshore shoring.	ed Clear Span is 11'-0)". There <mark>f</mark> ore, the g	gauge is acceptable for	e use without
For Gauge 18, the Maximum Unshore shoring.	ed Clear Span is 11'-0)". Therefore, the g	auge is acceptable for	e use without

2018-11-20 Jacking Vault Design.xmcd Page 18 of 27

2018-11-20 Jacking Vault Design.xmcd Page 19 of 27

2018-11-20 Jacking Vault Design.xmcd Page 20 of 27

SON GUMPERTZ & HEGER Engineering of Structures and Building Enclosures	SUBJECT: Pile Jackin	ig Vault Design	PROJECT NO: DATE: BY: CHECKED BY:	140741.00 11/27/2018 SEB LVH
4 Shear load				
	Load Vua [lb]	Capacity V _n [lb]	Utilization $\beta_V = V_{uv}/q$	V _n Status
Steel Strength*	295	7,555	4	OK
Steel failure (with lever arm)*	N/A E01	N/A	N/A	N/A
Concerning and a failure in direction **	091	22,007	3	UK NIA
* anchor having the highest loading	anchor group (relevant anchors)	NO	NA	NA
Weld connection between the st	tuds and the angle			
	$D_w := \frac{3}{16}$ in			
	$F_{E70,w} := 70 ksi$			
	d _{stud} := 0.75in			
Circumference of each stud	$C_a := \pi \cdot D_w = 0.5$	89 in		
	$\phi_w := 0.75$			
Vertical Shear Calculation	$R_{n.w} := 0.6 F_{E70.v}$	$v \cdot 0.707 \cdot D_w \cdot C_a = 3.2$	28 kip	
	$DCR \left(\varphi_{w'} R_{n,w}, \frac{P}{2} \right)$	$\left(\frac{12in}{2}\right) = (0.12 \text{ "C})$	ОК ")	

2018-11-20 Jacking Vault Design.xmcd Page 21 of 27

2018-11-20 Jacking Vault Design.xmcd Page 22 of 27

2018-11-20 Jacking Vault Design.xmcd Page 23 of 27

PSON GUMPERTZ & HEGER	SUBJECT: Pile Jackir	ng Vault Design	PROJECT NO: DATE: BY: CHECKED BY:	140741.00 11/27/2018 SEB LVH
4 Shear load				
	Load V _{ua} [lb]	Capacity V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V$	/ _n Status
Steel Strength*	591	5,619	11	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Bond Strength controls)**	591	13,495	5	OK
Concrete edge failure in direction **	N/A	N/A	N/A	N/A
* anchor having the highest loading Angle Leg Check for Bolt Hole	**anchor group (relevant anchors)			
Load per Anchor	P = 590.5 plf			
	$d_{hole} := 0.5in + \frac{1}{8}$	$\frac{1}{8}$ in = 0.625 in		
	t = 0.5 in			
	L _c := 2.1875in			
	$F_u := 58ksi$			
	$R_{nAngle} := min(1)$.2· L _c · t· F _u , 2.4 d· t·)	F_u) = 76.1 kip	
	$\varphi_{bv} := 0.75$			
	$DCR(\phi_{bv} \cdot R_{nAngle})$	$_{\rm e}, {\rm P} \cdot 12 {\rm in} = (0.01)$	"OK")	

2018-11-20 Jacking Vault Design.xmcd Page 24 of 27

2018-11-20 Jacking Vault Design.xmcd Page 25 of 27

SIMPSON GUMPERTZ & HEGER Engineering of Structures and Building Enclosures	SUBJECT: Pile Jacking Vault Design	PROJECT NO: 1 DATE: BY: CHECKED BY: 1	140741.00 11/27/2018 SEB _VH
Flexural yield capacity of double angle limit	$M_{ya} := 1.6S_x F_{ya} = 225.216$ kip in		AISC F9.1
Flexural plastic capacity of double angle limit	$M_p := Z_x \cdot F_{ya} = 252 \cdot \text{kip} \cdot \text{in}$ $DCR(d_x, \min(M_x, M_y), M_{ya}, \dots) = 0$	(0.16 "OK")	
	DCK(Φβ'IIIIi(Mp, Mya), MuDAngle) -	(0.10 0K)	
	$M_{max} := M_{uAngle}$		
	$I_y := I_{4x4}$		
	$J_{4x4} := 0.322 in^{4}$		
	$B := -2.3 \left(\frac{b_a}{7ft}\right) \sqrt{\frac{l_y}{J_{4x4}}} = -0.64$		
Shear Modulus of Elasticity of Steel	G _S := 11200ksi		
Lateral-Torsional Buckling	$\mathbf{M}_{cr} \coloneqq \frac{\pi \cdot \sqrt{\mathbf{E}_{s'} \mathbf{I}_{y'} \mathbf{G}_{s'} \mathbf{J}_{4x4}}}{7 \mathrm{ft}} \cdot \left(\mathbf{B} + \sqrt{1 + 1} \mathbf{B}_{s'} \mathbf{I}_{4x4} \right)$	$(B^2) = 694.143 \cdot kip$	in AISC F9.2
Shear Check of Single Extended Angle	e φ _{vA} := 0.9		
	k _v := 1.2		AISC G4
	$\frac{b_a}{t} < 1.1 \cdot \sqrt{\frac{k_v \cdot E_s}{F_{ya}}} = 1$		
	Therefore, Cv = 1		
	$C_v := 1$ $A_w := b_a t$		
	$V_{nA} := 0.6 F_{ya} \cdot A_w \cdot C_v = 43.2 \cdot kip$		AISC G4
	$DCR(\varphi_{vA}, V_{nA}, R_2) = (0.094 \text{ "OK"})$)	

2018-11-20 Jacking Vault Design.xmcd Page 26 of 27

PSON GUMPERTZ & HEGER	SUBJECT: Pile Jacking Vault Design	PROJECT NO: DATE: BY: CHECKED BY:	140741.00 11/27/2018 SEB LVH
Weld Connection Calculation at Exte	erior wall connection		
	3		
	$D := \frac{J}{16} in$		
	$F_{E70} := 70$ ksi		
Three inches of weld for each angle web	$l_w := 2 \cdot 3 in$		
	$\varphi_w = 0.75$		
Vertical Shear Calculation	$R_n := 0.6 F_{E70} 0.707 D l_w = 33.406$	kip	
	$DCR(\phi_{w'}R_n, R_1) = (0.09 \text{ "OK"})$		

2018-11-20 Jacking Vault Design.xmcd Page 27 of 27