301 MISSION REFINED FOUNDATION RETROFIT

LERA Structural Engineers ENGEO Incorporated 13 September 2018

- 1) Introduction
- 2) Refined Retrofit Design Overview
- 3) Refined Retrofit Performance
- 4) Next Steps
- 5) Conclusion

Foundation Retrofit Components:

- 1. New piles to rock to arrest settlement and resist a portion of gravity and seismic load (approximately 132 total, reduced from 232 total)
- 2. Existing piles to sand to carry reduced gravity loads and seismic loads.

, H)

Areas of refinement:

- 1. Targeted load carried to bedrock is 35% + 5% (previous was 55% + 10%)
 - Targeting 35% brings the Old Bay Clay stresses in line with other existing 30-40 story buildings in the area
- 2. Evaluation of existing precast piles as groups instead of individually
- 3. Updated Pile Design Push Pile
 - Less steel area (Removes center bar and reduces outer casing length)
 - Eliminates ground loss concerns and densifies soil around existing piles
 - Load test every pile during installation
- 4. Lower pile count reduces impact to tower mat
- 5. Parking garage remains fully operational
- 6. Reduced Cost: Estimated Pile Pricing \$35 Million

REVISED SCHEME:

- Install 66± 9 5/8" diameter piles to rock on west
- Lock off each rock pile with 550k± compression
- Install 66± 9 5/8" diameter piles to rock on east
- Lock off each rock pile with 550k± compression

ENGEO

E

OUR JOINT VENTURE CONSISTS OF THE TWO LARGEST MICROPILE CONTRACTORS IN NORTH AMERICA

Nicholson Construction

– Hayward Baker Inc.

CONFIDENTIAL & PRIVILEGED

NICHOLSON CONSTRUCTION IS

• a nationally-renowned geotechnical engineering and construction firm with more than 60 years of experience.

• the north American subsidiary of Soletanche Bachy, a France-based global leader in geotechnical and civil engineering construction.

nicholson | 🅉 💾

HAYWARD BAKER IS

• a nationally-renowned geotechnical engineering and construction firm with more than 70 years of experience.

• the largest business unit of Keller, the worlds largest geotechnical solutions specialist.

TOGETHER WE HAVE OVER 40 OFFICES IN THE US

WE ARE THE TWO MOST EXPERIENCED MICROPILE INSTALLERS IN THE WORLD

- Combined we have performed over 3,000 individual micropile projects and over \$1,500,000,000 of micropile work in North America over 40 years
- We have underpinned hundreds of important buildings across the country
- We have more experience with high capacity, deep and low headroom micropiles than any other contractor

COMBINED WE HAVE INSTALLED OVER \$1,500,000,000 OF MICROPILE WORK IN 40 YEARS

CHAYWARD

PUSH PILE DESIGN

CONFIDENTIAL & PRIVILEGED

IOINT VENTURE

ENGEO

JF/K

RETROFIT CONSTRUCTION SEQUENCE - PILE INSTALLATION SEQUENCE

Three Operation Teams:

1) Coring through the mat

TOTAL PILE INSTALLATION DURATION = 12 MONTHS

H.

- 2) Installing the pile
- 3) Grouting the pile and completing connection to the mat

JOINT VENTURE

ENGEO

WATERPROOFING

INDICATES AREAS WHERE MAT CONCRETE IS TO BE CHIPPED DOWN 2" TO ALLOW FOR INSTALLATION OF NEW WATERPROOFING MEMBRANE. REPLACEMENT 2" TOPPING SLAB TO BE CAST ABOVE NEW MEMBRANE AFTER INSTALLATION.

CONFIDENTIAL & PRIVILEGED

H)

SITE LOGISTICS PLAN

B1 LEVEL

AREAS TO BE DEMOLISHED TO ALLOW PILE INSTALLATION WORK TO BE ACCOMPLISHED

MATERIAL LAY DOWN AREA (APPROXIMATELY 1000 ft²)

SITE LOGISTICS PLAN

CONFIDENTIAL & PRIVILEGED

ENGEO

ĿR

RETROFIT STAT SHEET:

• Building Weight: 240,000 kips

(Note: 1kip = 1000lb)

- 132 <u>+</u> new piles to rock
- Allowable capacity of retrofit piles: 132,000 kips
- Retrofit increases foundation load carrying capacity by **55%**
- At retrofit completion:
 - <u>30-40%</u> of building weight on new piles to rock
 - <u>60-70%</u> of building weight on existing piles

Site Plan EXPLANATION ALL LOCATIONS ARE APPROXIMATE TR-3 BORING (ENGEO, 2018) BORING (TREADWELL & ROLLO, 1998) B-2 CSA/SD-BORING (CSA, 2016) BORING (DAMES & MOORE, 1990) CPT-2A BH-2 BORING (ARUP, 2013) CONE PENETRATION TEST (ARUP, 2013) TCPT-03 TTB-20 BORING (ARUP, 2008) CONE PENETRATION TEST (ARUP, 2008) vw. BORING (AGS, 2008) EXPLORATION (SAGE, 2018) **350 MISSION** P-53 BORING (TREADWELL & ROLLO, 2001) PIEZOMETER (ARUP, 2018) B' CROSS SECTION LOCATION HAND STATES 301 MISSION MILLENNIUM TOWER **50 FREMONT CENTER** 250 HOWARD PARK TOWER TRANSBAY TRANSIT CENTER 415 MISSION **199 FREMONT** SALESFORCE/TRANSBAY TOWER 181 FREMONT

LERA

3-D GIS Database of Soil Below the Tower

Typical Log of Coring

						OF	B	O	RII	NC		MF	PT	B •	-1		
	Geotechnical Exploration Beale St. San Francisco, CA 13553				DATE DRILLED: 1/18/2018 HOLE DEPTH: Approx. 300 ft. HOLE DIAMETER: 4.0 in. SURF ELEV (NAV88): Approx. 10 ft.			LOGGED / REVIEWED BY: M. Parks / JA DRILLING CONTRACTOR: Pitcher Drilling DRILLING METHOD: Mud Rotary HAMMER TYPE: 140 lb. Auto Trip									
	Depth in Feet leverton in Feet sample Type								Atter	berg L	imits					sf)	
				DESC	CRIPTION	Log Symbol	Water Level	Blow Count/Foot	Liquid Limit	Plastic Limit	Plasticity Index	Fines Content (% passing #200 sieve	Moisture Content (% dry weight)	Dry Unit Weight (pcf)	Shear Strength (psf) *field approximation	Unconfined Strength (t *field approximation	Strength Test Type
G- GOTECHNON, SUPOU WELEV BEALE STOPJ ENSED INCOT 22216		<u>s</u> 	San	Concrete sidewalk approxi CLAYEY SAND WITH CR brown (107R 36), medium subangular gravel, some si Scattered roots Grades to more clay Dried grout in cuttings Wood debris <u>FOOR CT GRADED FINE</u> dark gravel DENE	mately 5 inches thick AVEL (SC), dark yellowish dense, moist, well graded it [FILL] SAND WITH GRAVEL (SP). (2), loose, wet, fine sand,			0 2 2	Trên	Plac	Plas	4 (% ((0) 14.6		She	Une	Stre

Typical Log of Coring

JOINT VENTURE

ENGEO

JERA

Soil Properties

- Fill/Surficial Deposits
- Holocene Layer 1
- Holocene Layer 2
- Holocene Layer 3
- Holocene Layer 4
- Pleistocene Layer 1
- Pleistocene Layer 2
- Pleistocene Layer 3

CONFIDENTIAL & PRIVILEGED

-240

Soil Properties

H

JOINT VENTURE

ENGEO

Analysis of Coring Performed in Site Vicinity

JOINT VENTURE

CURRENT STRESS IMPOSED ON OLD BAY CLAY

OLD BAY CLAY

BEDROCK

BEDROCK

CURRENT STRESS IMPOSED ON OLD BAY CLAY

JOINT VENTURE

CURRENT STRESS IMPOSED ON OLD BAY CLAY

ĿR

CONFIDENTIAL & PRIVILEGED

GRAVITY EVALUATION – SFBC CODE CHECKS

CONFIDENTIAL & PRIVILEGED

ENGEO

H

💮 пісносзоп

GRAVITY EVALUATION – SFBC CODE CHECKS

CONFIDENTIAL & PRIVILEGED

ENGEO

💮 пісносзоп

COMPARISON WITH SGH PROPOSAL

COMPARISON WITH SGH PROPOSAL

CONFIDENTIAL & PRIVILEGED

IOINT VENTUR

ENGEO

JER

SGH PROPOSAL

LERA Analysis of SGH Proposed Retrofit, assuming 52 piles, preloaded to 41,000 kips on North and West sides only

B

BEDROCK

BEDROCK

CONFIDENTIAL & PRIVILEGED

SEQUENTIAL PILE FAILURE

LERA Individual Pile Backbones:

For the typical range of axial loads (300k – 700k), None of the existing piles can withstand greater than 6" lateral displacement

BSE-2N (MCE_R) NLTHA ENVELOPE RESULTS

Ext Foundation Displacements:

	Maximum Mat Displacement (Average of 4 Corners)									
Ground Motion	Ux	(in)	Uy	Uxy (in)						
Ground Motion	Pushing East	Pushing West	Pushing North	Pushing South	Resultant					
RSN178_IMPVALL	3.46	0.71	0.85	1.42	3.70					
RSN184_IMPVALL	NC	NC	NC	NC	NC					
RSN316_WESMORL	NC	NC	NC	NC	NC					
RSN802_LOMAP	NC	NC	NC	NC	NC					
RSN832_LANDERS	NC	NC	NC	NC	NC					
RSN1163_KOCAELI	3.35	0.16	0.59	3.34	4.72					
RSN1261_CHICHI	NC	NC	NC	NC	NC					
RSN1511_CHICHI	4.27	0.37	0.25	2.56	4.88					
RSN5827_SIERRA	5.44	0.21	0.21	3.42	6.25					
RSN6890_DARFIELD	3.84	0.23	0.59	3.67	4.79					
RSN6959_DARFIELD	2.29	0.18	0.28	2.07	2.99					
Median of 11 Ground Motions ¹	5.44	0.71	0.85	3.67	6.25					

Pile Lateral Stiffness	Pile Force
Lower Bound	Gravity

<u>Notes:</u>

 For the existing foundation, the median ground motion response for each direction (6th largest out of 11) was chosen to represent the average performance to account for nonconvergences.

Refined Retrofit Displacements:

	Maximum Mat Displacement (Average of 4 Corners						
Ground Motion	Ux	(in)	Uy	Uxy (in)			
Ground Motion	Pushing East	Pushing West	Pushing North	Pushing South	Resultant		
RSN178_IMPVALL	1.95	0.01	0.60	1.23	2.19		
RSN184_IMPVALL	5.48	0.53	0.53	1.65	5.49		
RSN316_WESMORL	4.00	0.01	0.27	0.95	4.04		
RSN802_LOMAP	4.30	0.07	0.92	0.64	4.32		
RSN832_LANDERS	4.43	0.02	0.12	1.53	4.61		
RSN1163_KOCAELI	1.99	0.04	0.42	1.84	2.68		
RSN1261_CHICHI	3.82	0.06	0.14	0.84	3.87		
RSN1511_CHICHI	2.19	0.08	0.14	1.54	2.46		
RSN5827_SIERRA	2.75	0.03	0.09	2.39	3.36		
RSN6890_DARFIELD	1.98	0.01	0.17	2.41	2.79		
RSN6959_DARFIELD	1.32	0.03	0.11	1.27	1.72		
Average of 11 Ground Motions	3.11	0.08	0.32	1.48	3.41		

[&]quot;NC" indicates a ground motion that did not analytically converge

BSE-2N (MCE_R) NLTHA ENVELOPE RESULTS

10/11 GMs Exceed 3.75" Displacement

5/11 GMs Exceed

6/11 GMs Exceed 3.75" Displacement

0/11 GMs Exceed

SGH Analysis		EXIS	TING C	ONDIT	ION	AFTER RETROFIT			
Results	Ground Motion Record	Max X	Min X	Max Y	Min Y	Max X	Min X	Max Y	Min Y
<u>Nesults.</u>	RSN#178 Imperial Valley-06	6.0	-1.1	4.4	-3.0	4.1	-2.4	3.7	-2.4
(8/1/18 Mediation	RSN#184 Imperial Valley-06	0.3	-11.4	1.6	-2.2	0.3	-7.9	1.3	-1.7
(c) 1) 10 mealation	RSN#316 Westmorland	1.1	-9.9	4.8	-1.2	0.8	-7.3	3.7	-1.4
Presentation	RSN#802 Loma Prieta	3.6	-5.4	1.6	-1.7	3.0	-4.0	1.1	-1.4
	RSN#832 Landers	2.7	-3.6	4.1	-4.2	2.2	-3.2	2.9	-3.3
	RSN#1163 Kocaeli	0.7	-4.3	1.9	-1.8	0.7	-3.5	1.5	-1.4
	RSN#1261 Chi-Chi	1.9	-2.4	3.5	-3.1	2.0	-1.8	2.7	-2.5
	RSN#1511 Chi-Chi	1.2	-1.4	3.2	-4.1	1.1	-1.1	2.8	-3.1
	RSN#5827 El Mayor-Cucapah_Mexico	3.9	-1.8	2.9	-3.0	3.0	-1.6	2.3	-2.4
	RSN#6890 Darfield NZ	1.8	-2.9	0.9	-5.9	1.7	-2.5	2.0	-4.2
	RSN#6959 Darfield NZ	1.8	-2.2	5.6	-2.8	1.6	-2.1	4.0	-2.2
	Average of 11 Ground Motions	2.3	-4.2	3.1	-3.0	1.9	-3.4	2.6	-2.4

LERA Analysis Results:

	6" Displacement			6" Displacement					
	EXIS	TING C	ONDIT	ION	AFTER RETROFIT				
Ground Motion Posord	Ux (in)		Uy <u>(</u> in)		Ux (in)		Uy	(in)	
	Pushing East	Pushing West	Pushing North	Pushing South	Pushing East	Pushing West	Pushing North	Pushing South	
RSN178_IMPVALL	3.46	0.71	0.85	1.42	1.95	0.01	0.60	1.23	
RSN184_IMPVALL	NC	NC	NC	NC	5.48	0.53	0.53	1.65	
RSN316_WESMORL	NC	NC	NC	NC	4.00	0.01	0.27	0.95	
RSN802_LOMAP	NC	NC	NC	NC	4.30	0.07	0.92	0.64	
RSN832_LANDERS	NC	NC	NC	NC	4.43	0.02	0.12	1.53	
RSN1163_KOCAELI	3.35	0.16	0.59	3.34	1.99	0.04	0.42	1.84	
RSN1261_CHICHI	NC	NC	NC	NC	3.82	0.06	0.14	0.84	
RSN1511_CHICHI	4.27	0.37	0.25	2.56	2.19	0.08	0.14	1.54	
RSN5827_SIERRA	5.44	0.21	0.21	3.42	2.75	0.03	0.09	2.39	
RSN6890_DARFIELD	3.84	0.23	0.59	3.67	1.98	0.01	0.17	2.41	
RSN6959_DARFIELD	2.29	0.18	0.28	2.07	1.32	0.03	0.11	1.27	
Average of 11 Ground Motions	5.44	0.71	0.85	3.67	3.11	0.08	0.32	1.48	

SEQUENTIAL PILE FAILURE

OLD BAY CLAY

SEQUENTIAL PILE FAILURE

OLD BAY CLAY

SEQUENTIAL PILE FAILURE

OLD BAY CLAY

SEQUENTIAL PILE FAILURE

OLD BAY CLAY

SEQUENTIAL PILE FAILURE

OLD BAY CLAY

SEQUENTIAL PILE FAILURE

OLD BAY CLAY

OLD BAY CLAY

SEQUENTIAL PILE FAILURE

Sequential Pile Failure Review (with Retrofit Piles installed)

Pile Axial Forces (Gravity)

LERA Individual Pile Lateral Backbone Curve (0.25° Head Rotation)

, Hj

JOINT VENTURE

ENGEO

Sequential Pile Failure Review (with Retrofit Piles installed)

Looking at one pile under the NE outrigger in Median BSE-2N (MCE_R) Time History RSN5827:

LERA Individual Pile Lateral Backbone Curves (0.25° Head Rotation)

JOINT VENTURE

ENGEO

H,

Sequential Pile Failure Review (with Retrofit Piles installed)

Mapping of all piles that would fail in the <u>Median</u> ground motion (RSN5827):

- Failures due to **Eastern Motion**:

Peak lateral displacement = 2.8" at t > 40 sec

For the median MCE_R ground motion with retrofit installed, no piles would fail, even if sequential pile failure were properly accounted for.

The same is true for 10 of the 11 ground motions evaluated.

H

Sequential Pile Failure Review (with Retrofit Piles installed)

Looking at one pile under the NE outrigger in Maximum BSE-2N (MCE_R) Time History RSN184:

LERA Individual Pile Lateral Backbone Curves (0.25° Head Rotation)

JOINT VENTURE

ENGEO

H)

Sequential Pile Failure Review (with Retrofit Piles installed)

Mapping of all piles that would fail in the <u>Maximum</u> ground motion (RSN5827):

- Failures due to Eastern Motion:

Peak lateral displacement = 5.5" at t > 8 sec

For the maximum MCE_R ground motion with retrofit installed, we lose 65 piles (7% of the total). The analysis may not converge when sequential pile failure is properly accounted for.

NEXT STEPS

NEXT STEPS

- 1) Test New Push Pile in Tower Basement
 - Propose to reuse mat connection test hole:

- 2) Refine analysis to finalize pile count and design
- 3) Complete permit drawing set for submission to DBI

CONCLUSION

REFINED RETROFIT SUMMARY:

- 132 new piles to rock
 - Balanced between east and west
 - Work completed entirely in basement (no need to purchase city land)
 - Reliably arrests settlement
- New Push Pile Design
 - Simplified operation saves time and cost
 - Displacement process protects existing piles
 - No ductile fuse required
- Reduced impact on tower basement and parking garage
- Addresses sequential pile and global shear failure concerns
- Estimated Pile Installation Cost: \$35 Million

