

Design Documentation of Excavation Support and Vault Bracing

301 Mission Street San Francisco, CA 5 December 2018

SGH Project 147041.10

PREPARED FOR:

Millennium Tower Association 301 Mission Street Level B-1 San Francisco, CA 94103

PREPARED BY:

Simpson Gumpertz & Heger Inc. 500 12th Street, Suite 270 Oakland, CA 94607 Tel: 510.457.4600 Fax: 510.457.4599

> Boston Chicago Houston New York San Francisco Southern California Washington, DC

Design, Investigate, and Rehabilitate

www.sgh.com

Table of Contents

1.	INTRODUCTION 1.1 Background 1.2 Objective 1.3 Scope of Work 1.4 Project Description	2 2 2 2 2 2
2.	DESIGN REFERENCES	3
3.	 ANALYSIS AND DESIGN OF SHORING SYSTEM 3.1 SAP2000 Finite Element Analysis 3.1.1 Soil P-Y Springs 3.1.2 Jet Grout Plug 3.1.3 Loading 3.1.4 SAP2000 Analysis Results 3.2 PLAXIS Soil-Structure Interaction Model 3.2.1 Methodology 3.2.2 Soil parameters 3.2.3 Structural parameters 3.2.4 Construction stages 3.2.5 PLAXIS soil-structure interaction results 3.3 Considerations for Existing Structure 3.4 Design of Excavator Platform 	4 4 6 9 10 12 17 17 17 18 21 22 21 22 24 26 27
4.	ANALYSIS AND DESIGN OF PG&E VAULT BRACH 4.1 Vault Details 4.2 Design of Supports	ING 28 28 29
5.	SUMMARY	30
APP	PENDIX A: SHORING CALCULATIONS	31

1. INTRODUCTION

1.1 Background

The concrete tower at 301 Mission will undergo a voluntary upgrade and foundation improvement. New piles will be added adjacent to the existing mat slab. The tower mat slab will be extended to incorporate the new piles along Fremont St. and Mission St. A braced shoring system will be used excavate and construct the mat extension.

1.2 Objective

Our design objective in this report is to develop a Support of Excavation (SOE) system to allow retrofit work on the tower foundation to be completed. Our shoring system will provide support for an excavation to the bottom of the tower mat foundation.

1.3 Scope of Work

Our scope of work includes the following tasks:

- Develop shoring system design to support foundation improvement construction
- Develop specifications for the shoring system
- Develop a support system for PG&E vaults during construction

1.4 Project Description

The tower at 301 Mission is located on the corner of Fremont Street and Mission Street in San Francisco. The shoring wall will consist of soldier piles installed in drilled holes, with lagging and jet grout columns in between the soldier piles. The excavation will be 10 ft wide; 27 ft deep and will be braced by a single level of waler and strut system. To maximize the excavation access, the waler will be installed directly above the soldier piles and the struts will be raised above the waler to also support excavator platforms. The shoring system will be constructed along the street and sidewalk for approximately 175 ft along Fremont Street, and 125 ft along Mission Street.

2. DESIGN REFERENCES

We used the following codes and documents for our design:

- CBC 2016
- AASHTO LRFD Bridge Design Specifications 2016
- ACI 318-14
- ASCE 7-10
- AISC 360-10
- "Jet Grouting Technology, Design, and Control". Croce, Flora, Modoni. 2014.
- "Single Piles and Pile Groups under Lateral Loading, 2nd Edition". Impe, Reese. 2011.

3. ANALYSIS AND DESIGN OF SHORING SYSTEM

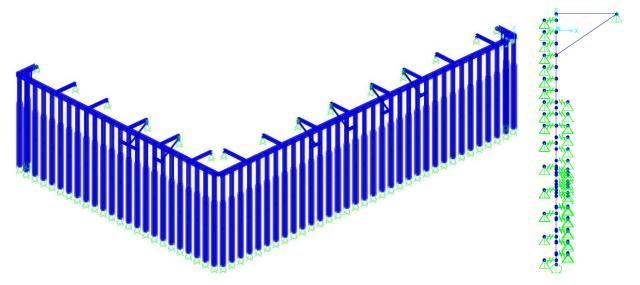
We conducted parallel analyses with two software packages to verify the results and better predict the deflection response of the shoring system. The proposed design groundwater level for this location is El. -7 ft SFCD. However, recent explorations have shown the groundwater much deeper. Our analysis will account for both conditions:

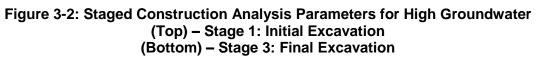
- Design groundwater table present at El. -7 ft SFCD (GWH), and
- Expected groundwater table present at El. -28 ft SFCD (GWL)

Note that all elevations shown are for reference and may vary in the field. Contractor shall verify all elevations in the field prior to installation of the SOE system.

3.1 SAP2000 Finite Element Analysis

We modeled the complete shoring system around the tower foundation along Fremont Street and Mission Street. We modeled the soldier piles, walers, struts, and other bracing as frame elements. We modeled P-Y springs which provided the lateral resistance for the soldier piles. Figure 3-1 below shows the model along with the location of the soil springs.




Figure 3-1: SAP Model (Left – Frame Elements, Right – Elevation View with Soil Springs)

We used nonlinear staged analysis to evaluate the successive stages of excavation. We developed the following 2 stages:

- 1. Install soldier piles, waler, and type 1 struts for initial excavation of 14 ft
- 2. Install type 2 struts and additional kicker bracing and excavate remaining depth to jet grout plug

Figure 3-2 below shows the detailed SAP2000 staged construction steps.

ta For Stage 1 (0. days;	Cantilever wa	II)				
Operation	Object Type	Object Name	Age At Add	Туре	Name	Scale Factor
Add Structure V	Group 🗸 🗸	Soldier Pile: $ \smallsetminus $	0.			
Add Structure	Group	Soldier Piles	0.			
Add Structure	Group	Passive Spring	0.			
dd Structure	Group	Exc. Springs_1	0.			
oad Objects If Added	Group	Soldier Piles		Load Pattern	DEAD	1.
oad Objects If Added	Group	Soldier Piles		Load Pattern	LEP_2	1.
oad Objects If Added	Group	Soldier Piles		Load Pattern	V Surcharge	0.
oad Objects If Added	Group	Soldier Piles		Load Pattern	Con. Surcharg	1.
oad Objects If Added	Group	Soldier Piles		Load Pattern	Hydro_1_2	1.
dd Structure	Group	Waler	0.			
oad Objects If Added	Group	Waler		Load Pattern	DEAD	1.
dd Structure	Group	Struts 1	0.			
oad Objects If Added	Group	Struts 1		Load Pattern	DEAD	1.
Add Structure	Group	Kicker Support				
d Case Data - Nonline		HSS Kicker Fra				
ad Structure ad Case Data - Nonline a For Stage 2 (0. days;	ear Static Stage	ed Construction		Time	Name	Scale Easter
ad Case Data - Nonline a For Stage 2 (0. days; Operation	ear Static Stage Final Exc.) Object Type	ed Construction Object Name		Туре	Name	Scale Factor
ad Case Data - Nonline a For Stage 2 (0. days; Operation Remove Structure ~	ar Static Stage Final Exc.) Object Type Group ~	ed Construction Object Name Exc. Spring ~		Туре	Name	Scale Factor
ad Case Data - Nonline a For Stage 2 (0. days; Operation Remove Structure ~ Remove Structure	ear Static Stage Final Exc.) Object Type Group ~ Group	ed Construction Object Name Exc. Spring ~ Exc. Springs_1	Age At Add	Туре	Name	Scale Factor
ad Case Data - Nonline a For Stage 2 (0. days; Operation Remove Structure ~ Remove Structure Remove Structure	ear Static Stage Final Exc.) Object Type Group ~ Group Group	ed Construction Object Name Exc. Spring ~ Exc. Springs_1 Passive Spring	Age At Add	Туре	Name	Scale Factor
ad Case Data - Nonline a For Stage 2 (0. days; Operation Remove Structure Remove Structure Remove Structure Remove Structure	ear Static Stage Final Exc.) Object Type Group Group Group Group Group	ed Construction Object Name Exc. Spring ~ Exc. Springs_1 Passive Spring Exc. Springs_3	Age At Add	Туре	Name	Scale Factor
ad Case Data - Nonline a For Stage 2 (0. days; Operation Remove Structure Remove Structure Remove Structure Add Structure Add Structure	ear Static Stage Final Exc.) Object Type Group Group Group Group Group Group	ed Construction Object Name Exc. Spring ~ Exc. Springs_1 Passive Spring Exc. Springs_3 Passive Spring	Age At Add			
ad Case Data - Nonline a For Stage 2 (0. days; Operation Remove Structure Remove Structure Remove Structure Add Structure Add Structure and Objects	ear Static Stage Final Exc.) Object Type Group Group Group Group Group Group Group	ed Construction Object Name Exc. Spring ~ Exc. Springs_1 Passive Spring Exc. Springs_3 Passive Spring Soldier Piles	Age At Add	Load Pattern	Hydro_3	1.
ad Case Data - Nonline a For Stage 2 (0. days; Operation Remove Structure Remove Structure Remove Structure Add Structure Add Structure add Structure add Structure add Objects and Objects	ear Static Stage Final Exc.) Object Type Group Group Group Group Group Group Group Group	ed Construction Object Name Exc. Spring ~ Exc. Springs_1 Passive Spring Exc. Springs_2 Passive Spring Soldier Piles Soldier Piles	Age At Add	Load Pattern Load Pattern	Hydro_3 LEP (SW-GW)	1.
ad Case Data - Nonline a For Stage 2 (0. days; Operation Remove Structure Remove Structure Add Structure Add Structure Add Structure add Structure add Structure add Objects and Objects and Objects	ear Static Stage Final Exc.) Object Type Group Group Group Group Group Group Group Group Group Group	ed Construction Object Name Exc. Spring ~ Exc. Springs_1 Passive Spring Exc. Springs_2 Passive Spring Soldier Piles Soldier Piles Soldier Piles	Age At Add	Load Pattern Load Pattern Load Pattern	Hydro_3 LEP (SW-GW) LEP_2	1. 1. -1.
ad Case Data - Nonline a For Stage 2 (0. days; Operation Remove Structure Remove Structure Add Structure Add Structure Add Structure add Structure add Structure add Objects and Objects and Objects and Objects	ear Static Stage Final Exc.) Object Type Group Group Group Group Group Group Group Group Group Group Group	ed Construction Object Name Exc. Spring \checkmark Exc. Springs_1 Passive Spring Exc. Springs_2 Passive Spring Soldier Piles Soldier Piles Soldier Piles Soldier Piles	Age At Add	Load Pattern Load Pattern	Hydro_3 LEP (SW-GW)	1.
ad Case Data - Nonline a For Stage 2 (0. days; Operation Remove Structure Remove Structure Add Structure Add Structure Add Structure add Objects add Objects add Objects add Objects add Structure	ear Static Stage Final Exc.) Object Type Group Group Group Group Group Group Group Group Group Group Group Group Group Group Group Group Group	ed Construction Object Name Exc. Spring ~ Exc. Springs_1 Passive Spring Exc. Springs_2 Passive Spring Soldier Piles Soldier Piles Soldier Piles Soldier Piles Soldier Piles Soldier Piles Soldier Piles Soldier Piles Soldier Piles	Age At Add	Load Pattern Load Pattern Load Pattern Load Pattern Load Pattern	Hydro_3 LEP (SW-GW) LEP_2 Hydro_1_2	1. 1. -1. -1.
ad Case Data - Nonline a For Stage 2 (0. days; Operation Remove Structure Remove Structure Add Structure Add Structure Add Structure add Objects add Objects add Objects add Structure add Structure add Structure add Structure add Structure add Objects add Structure add Structure add Structure add Structure	ear Static Stage Final Exc.) Object Type Group	ed Construction Object Name Exc. Spring \checkmark Exc. Springs_1 Passive Spring Exc. Springs_2 Passive Spring Soldier Piles Soldier Piles	Age At Add 0. 0.	Load Pattern Load Pattern Load Pattern	Hydro_3 LEP (SW-GW) LEP_2	1. 1. -1.
ad Case Data - Nonline a For Stage 2 (0. days; Operation Remove Structure Remove Structure Add Structure	ear Static Stage Final Exc.) Object Type Group	ed Construction Object Name Exc. Spring ~ Exc. Springs_1 Passive Spring Exc. Springs_2 Passive Spring Soldier Piles Soldier Piles So	Age At Add	Load Pattern Load Pattern Load Pattern Load Pattern Load Pattern	Hydro_3 LEP (SW-GW) LEP_2 Hydro_1_2 DEAD	1. 1. -1. -1. 1.
ad Case Data - Nonline a For Stage 2 (0. days; Operation Remove Structure Remove Structure Add Structure	ear Static Stage Final Exc.) Object Type Group	ed Construction Object Name Exc. Spring ~ Exc. Springs_1 Passive Spring Exc. Springs_2 Passive Spring Soldier Piles Soldier Piles So	Age At Add 0. 0.	Load Pattern Load Pattern Load Pattern Load Pattern Load Pattern Load Pattern	Hydro_3 LEP (SW-GW) LEP_2 Hydro_1_2 DEAD DEAD	1. 1. -1. -1. 1. 1.
ad Case Data - Nonline a For Stage 2 (0. days;	ear Static Stage Final Exc.) Object Type Group	ed Construction Object Name Exc. Spring ~ Exc. Springs_1 Passive Spring Exc. Springs_2 Passive Spring Soldier Piles Soldier Piles So	Age At Add 0. 0.	Load Pattern Load Pattern Load Pattern Load Pattern Load Pattern	Hydro_3 LEP (SW-GW) LEP_2 Hydro_1_2 DEAD	1. 1. -1. -1. 1.

3.1.1 Soil P-Y Springs

We developed P-Y springs in LPILE v2016 to evaluate the lateral resistance of the soldier piles in our SAP2000 model. We developed soil parameters from geotechnical data available in the original geotechnical design report and collaborated with John Egan of Slate Geotechnical and Shannon & Wilson. We modeled a 32 in. diameter concrete soldier piles and calculated a 1.875 spacing to diameter ratio. We used recommendations for side-by-side piles in the reference, "Single Piles and Pile Groups under Lateral Loading", to calculate a 0.79 p-multiplier for the soldier piles.

Table 3-1 and Table 3-2 show the LPILE soil parameters for the GWH and GWL scenarios respectively. Figure 3-3 through Figure 3-6 plot the LPILE p-y springs for the backfill side and the initial excavation for both the GWH and GWL scenarios. Figure 3-7 shows the p-y springs for the final excavation, note that we replaced the top 5 ft of p-y springs below the final excavation with the jet grout spring shown in Figure 3-8.

		1						
Soil Type	LPile soil model	Top Elevation		Effective Unit Weight	Friction angle	k	undrained cohesion	Strain factor
		(SFCD ft)	(SFCD ft)	γ _{eff} (pcf)	φ (deg)	(pci)	(psf)	E50
Fill	Sand (Reese)	2.8	-26	51	30	30	-	-
Marine Deposits	Soft Clay	-26	-40	43	-	-	880	0.02
Silty Sand	Sand (Reese)	-40	-44	64	35	60	-	-
	Stiff Clay							
Clayey Sand	w/o free water	-44	-54	43	-	-	1595	0.007
Lower Silty Sands	Sand (Reese)	-54	-83	66	34	75	-	-
	Stiff Clay							
Old Bay Clay	w/o free water	-83	-93	51	-	-	3960	0.005

Table 3-1: LPILE soil parameters for GWH scenario

 Table 3-2: LPILE soil parameters for GWL scenario

		1						
		Top Elevation			angle	k	undrained cohesion	Strain factor
Soil Type	LPile soil model	(SFCD ft)	(SFCD ft)	γ_{eff} (pcf)	φ (deg)	(pci)	(psf)	E50
Fill	Sand (Reese)	2.8	-26	115	30	37.5	-	-
Marine Deposits	Soft Clay	-26	-40	43	-	-	880	0.02
Silty Sand	Sand (Reese)	-40	-44	64	35	60	-	-
	Stiff Clay							
Clayey Sand	w/o free water	-44	-54	43	-	-	1595	0.007
Lower Silty Sands	Sand (Reese)	-54	-83	66	34	75	-	-
	Stiff Clay							
Old Bay Clay	w/o free water	-83	-93	51	-	-	3960	0.005

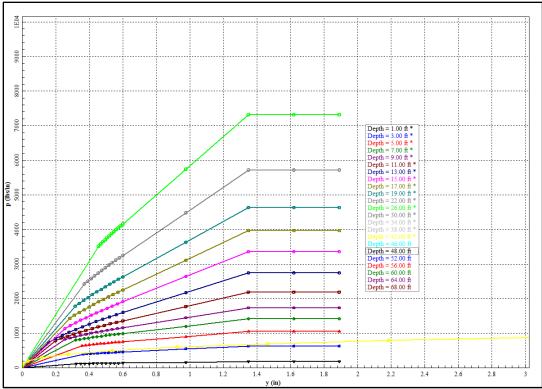


Figure 3-3: LPILE p-y springs backfill side (GWH)

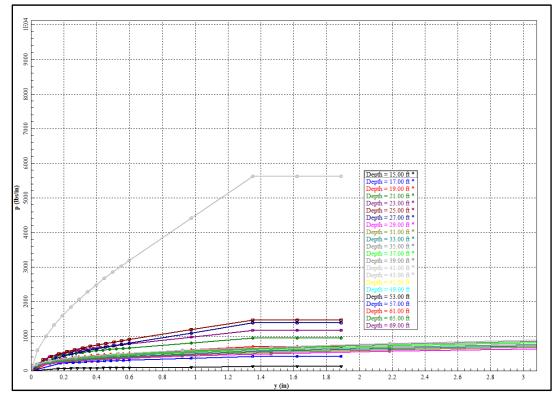


Figure 3-4: LPILE p-y springs initial excavation (GWH)

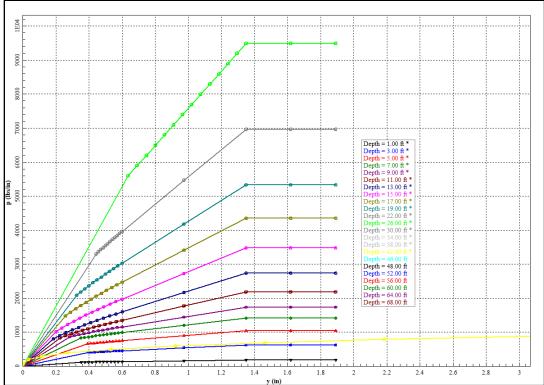


Figure 3-5: LPILE p-y springs backfill side (GWL)

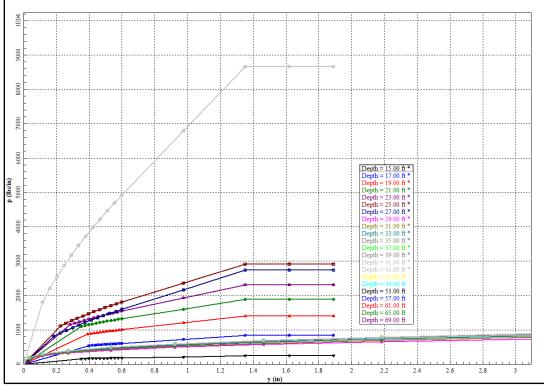
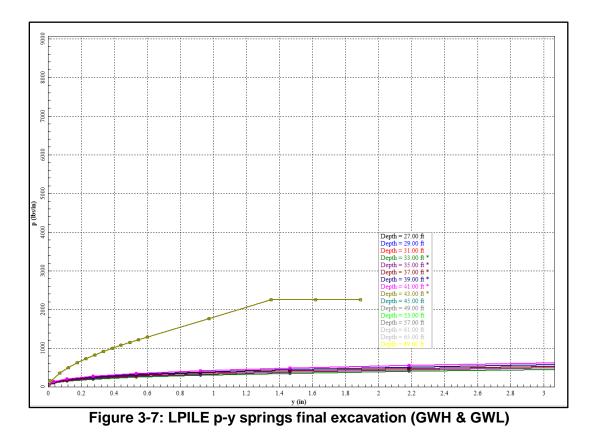



Figure 3-6: LPILE p-y springs initial excavation (GWL)

3.1.2 Jet Grout Plug

The jet grout plug serves 2 purposes: an impermeable barrier at the base of the excavation to provide dry working conditions, and a compression plug at the base of the excavation to limit wall deflections. We relied on the information and experience presented in the jet grouting reference listed in Section 2 to model the plug parameters.

The plug will be installed in the marine deposits layer, which consists of very soft to medium stiff clays interbedded with very loose to medium dense sands and clayey sands. Generally, jet grouting produces better performance characteristics when installed in cohesionless soils with sufficient void space to allow cementing to better penetrate through the soil. Due to the variability of the layer, we conservatively assumed the layer will behave as a clay material which will result in a lower jet grout strength as compared to a cohesionless material.

As described in the reference, "Jet Grouting – Technology, Design, and Control", it is common to assume quasilinear behavior before failure. We assumed the linear stiffness of the grout to be the tangent stiffness at 50% of the failure stress, consistent with studies by Fang et al. presented in the reference. We assumed an effective width of grout which resists the soldier pile wall

movement equal to 3 ft, roughly corresponding to the width of the concrete soldier pile where the load is concentrated. The design strength of the jet grout will be 400 psi and the final stiffness we used for the SAP model (input as a p-y spring) is 288 kips/inch of deflection. We calculated the failure deflection of the plug to be 0.42 inches.

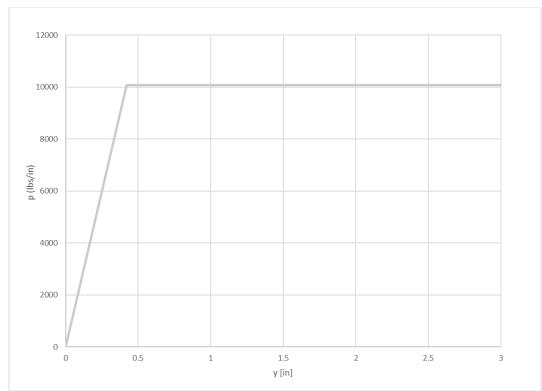


Figure 3-8: Jet grout p-y spring final excavation (GWH & GWL)

3.1.3 Loading

Shannon & Wilson (S&W) provided the apparent earth pressure for the final excavation stage for both GWL and GWH cases. The trapezoidal distribution corresponds to the braced shoring system with the strut and waler system bracing the top of the shoring wall. Figure 3-9 plots the lateral loading for the final excavation stage. Based upon our review of the planned construction loads near the shoring system, we decided to add a lateral surcharge of 250 psf due to heavy construction equipment adjacent to the excavation. Alternatively, we also checked the shoring system for a lateral surcharge due to vehicle traffic of 100 psf. Figure 3-10 shows the lateral loading we applied for the initial excavation stage. We linearly scaled the apparent earth pressure provided by S&W for the initial excavation height of 14 ft, while keeping the other loading components constant.

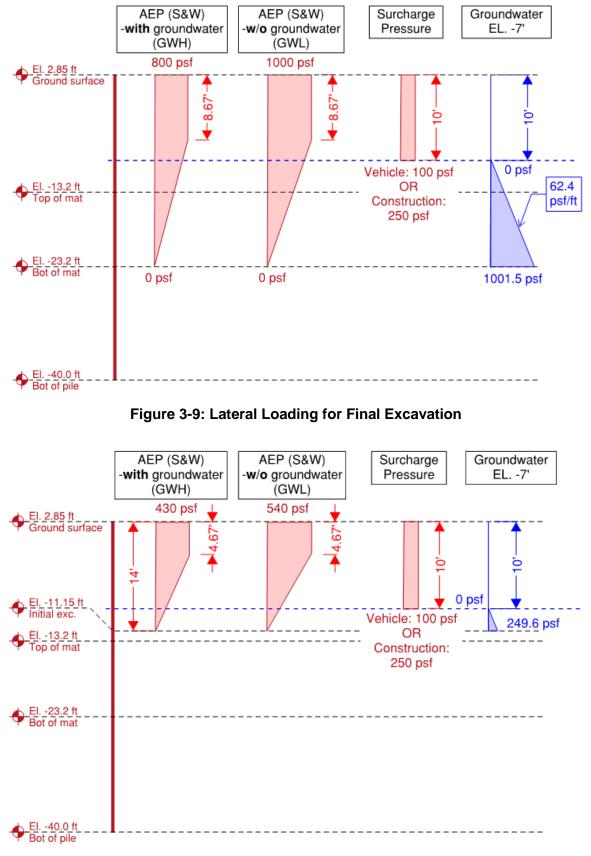


Figure 3-10: Lateral Loading for Initial Excavation

In addition to the lateral pressures, the struts will support construction equipment during excavation. We evaluated a CAT 325F excavator placed on a platform above the struts along the entire length of the excavation. We modeled worst case loading scenarios with an included impact factor of 1.33.

3.1.4 SAP2000 Analysis Results

We tabulated results and tracked deflections, member demands, and soil forces for both the design high and low groundwater conditions.

Jet Grout Plug

We observed a maximum force in the top jet grout soil spring of 36.8 kips. The springs represent an equivalent soil height of 1 ft, which corresponds to a compression demand of 85 psi on the jet grout.

Soldier Piles (W18x130)

Because the struts are spaced at 40 ft during the initial excavation, the behavior of the soldier pile wall varies with location relative to the initial struts. Piles furthest from the initial strut locations will experience the highest deflections during the initial stage. Piles close to the initial struts will attract a large portion of the apparent earth pressure due to the stiffness of the strut at the top of the pile. These piles will have the controlling shear and bending structural demands while not showing significant deflections until the final excavation (stage 2).

Figure 3-11 and Figure 3-12 plot the maximum soldier pile deflection and structural demands. As the stages progress, the location of maximum deflection moves from the top of the pile down to around mid-height of the excavation in the final step.

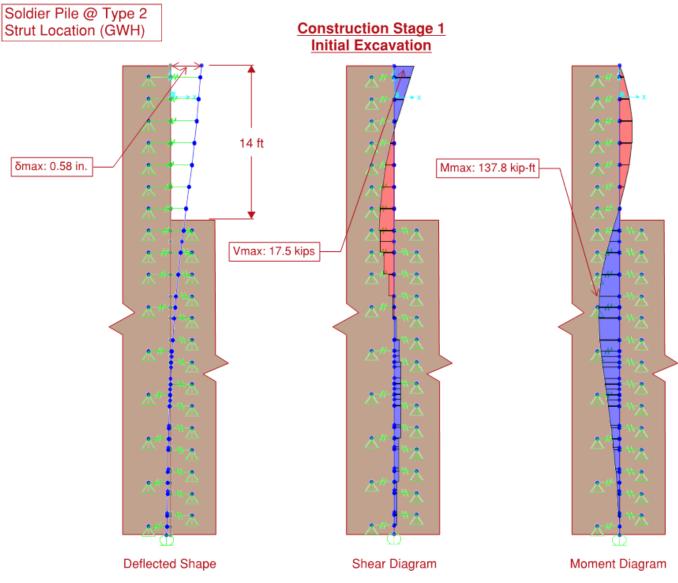


Figure 3-11: SAP Output for Soldier Pile Demands in Stage 1 (Initial Excavation)

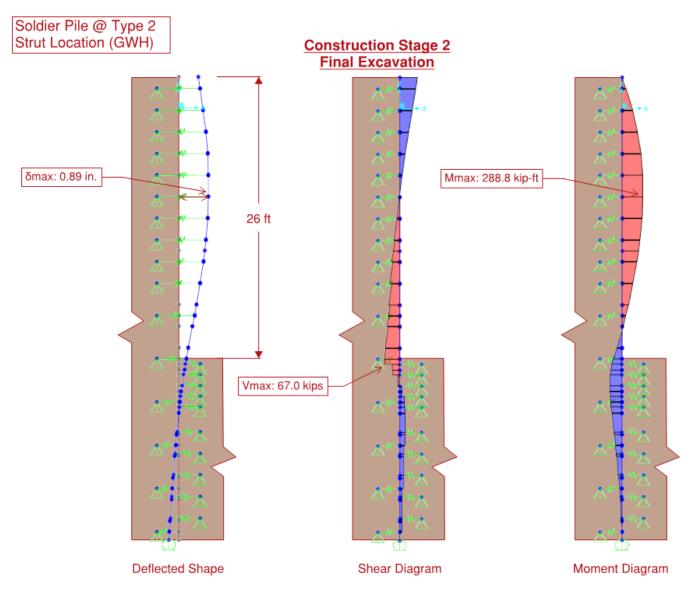


Figure 3-12: SAP Output for Soldier Pile Demands in Stage 2 (Final Excavation)

Waler (W27x146) and Struts (W12x136)

We modeled the waler as a continuous member along the length of the excavation. We sized the waler to limit deflections during the initial excavation stage and to ensure construction tolerances on soldier pile placement can be accommodated in the connection design. Figure 3-13 below shows the bending moment distribution in the waler for both construction stages. The waler experiences the highest bending moments at initial strut locations where axial deflections are small and the system is stiff.

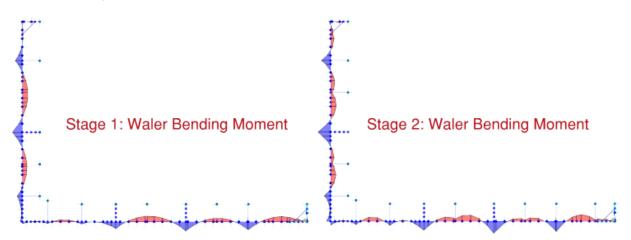


Figure 3-13: Bending Moments in Waler for GWH Case

The initial Type 1 struts carry two times the load the Type 2 struts. In addition to the axial demand, the struts will also support the excavator platform during construction. The struts are designed for combined axial and bending demands which include eccentricities in the connection design.

Design Check of Structural Members

We determined ASD level capacities for the shoring members using AISC to check demands obtained through our SAP analysis. Table 3-3 and Table 3-4 below show maximum demands for the shoring system elements for the high groundwater and low groundwater analysis cases, respectively. Table 3-5 shows the maximum deflections along the height of the soldier pile wall for each stage, and for high and low groundwater conditions. Our design calculations are presented in Appendix A.

Ground	Groundwater Condition: El7 ft SFCD (GWH)						
Shoring Element	Demand Type	Max ASD Demand	ASD Capacity	Controlling DCR			
Soldier Pile	Bending (kip-ft)	342	724	0.47			
(W18x130)	Shear (kips)	67	259	0.26			
	Bending M3 (kip-ft)	451	1160	0.78			
Waler (W27x146)	Bending M2 (kip-ft)	96	243	0.70			
	Shear (kips)	177	332	0.53			
Strut	Axial (kips)	323	1030	0.88			
(W12x136)	Bending (kips)	342	534	0.00			
Corner Brace (Pipe 8XS)	Axial (kips)	50	224	0.22			
Kicker (Pipe 8XS)	Axial (kips)	172	220	0.78			
HSS Kicker Support	Bending M3 (kip-ft)	90	412	0.74			
(HSS16x12x5/8)	Bending M2 (kip-ft)	176	337	0.14			

Table 3-3: Member DCR Table for Design High Groundwater

Table 3-4: Member DCR Table for Design Low Groundwater

Groundwater Condition: El28 ft SFCD (GWL)					
Shoring Element	Demand Type	Max ASD Demand	ASD Capacity	Controlling DCR	
Soldier Pile	Bending (kip-ft)	304	724	0.42	
(W18x130)	Shear (kips)	62	259	0.24	
	Bending M3 (kip-ft)	460	1160	0.78	
Waler (W27x146)	Bending M2 (kip-ft)	93	243	0.10	
	Shear (kips)	178	332	0.54	
Strut	Axial (kips)	335	1030	0.92	
(W12x136)	Bending (kips)	355	534	0.32	
Corner Brace (Pipe 8XS)	Axial (kips)	51	224	0.23	
Kicker (Pipe 8XS)	Axial (kips)	171	220	0.78	
HSS Kicker Support	Bending M3 (kip-ft)	90	412	0.74	
(HSS16x12x5/8)	Bending M2 (kip-ft)	176	337	0.74	

Groundwater Condition	Maximum Construction Stage Displacements (in.)		
	Stage 1	Stage 2	
El7 ft SFCD	0.59	0.90	
El28 ft SFCD	0.62	0.87	

Table 3-5: Maximum Deflections of Shoring Wall

3.2 PLAXIS Soil-Structure Interaction Model

We analyzed the excavation and shoring using PLAXIS 2D Version 2017.01. The goal of our soilstructure interaction analysis is to evaluate the shoring system and confirm results of the SAP2000 analysis.

3.2.1 Methodology

We analyzed the shoring system with a PLAXIS 2D model. Figure 3-14 shows the finite element model geometry, elements and boundary conditions. Figure 3-15 shows the subsurface profile and support element elevations relative to the excavation.

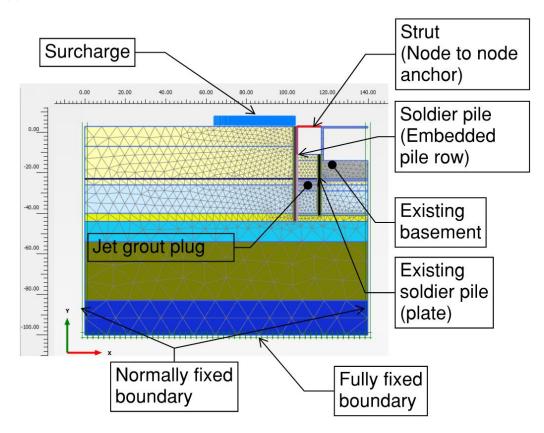
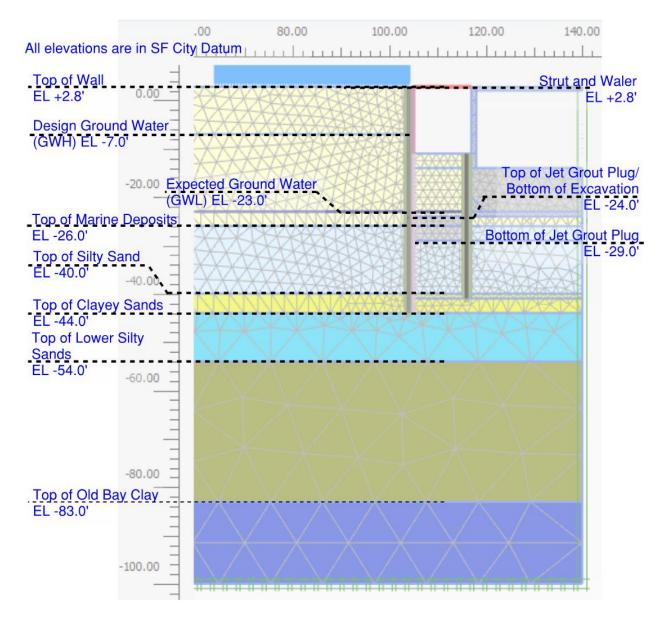



Figure 3-14: PLAXIS Model elements and boundary conditions

3.2.2 Soil parameters

We referenced the subsurface profile based on the Idealized Subsurface Profiles from the original geotechnical report. We developed soil parameters based on available soil parameters in collaboration with John Egan. Soils were modeled using the Hardening model with small-strain stiffnesses (HS_{small}). Tables 4-1 through 4-3 present the soil elevations and input parameters.

	Top Elevation	Depth from top of wall
Soil Type	(SFCD ft)	(ft)
Fill	2.8	0
Marine Deposits	-26	28.8
Silty Sand	-40	42.8
Clayey Sand	-44	46.8
Silty Sands	-54	56.8
Old Bay Clay	-83	85.8

Table 3-6: PLAXIS generalized subsurface profile

Un	drained Soil	parameters for <u>co</u> l	hesive materia	ls
		Marine	Clayey	Old Bay
Identification	units	Deposits	Sand	Clay
Drainage			Undrained	Undrained
Туре		Undrained B	В	В
γ_{unsat}	lbf/ft ³	107	107	115
γ _{sat}	lbf/ft ³	107	107	115
E_{50}^{ref}	lbf/ft ²	276.0E3	382.0E3	863.0E3
E_{oed}^{ref}	lbf/ft ²	138.00E3	191.00E3	432.0E3
E _{ur} ref	lbf/ft ²	828.0E3	1.147E6	2.59E6
power (m)	-	1	1	1
Su ^{ref}	lbf/ft ²	900	1425	2680
φ (phi)	deg	0	0	0
ψ	deg	0	0	2
Su ^{inc}	psf/ft	0	0	0
Z ^{ref}	ft	-33	-49	0
Y 0.7	-	0.500E-3	0.500E-3	0.500E-3
Go ^{ref}	lbf/ft ²	600.0E3	831.0E3	1.877E6
Vur	-	0.15	0.15	0.15
p _{ref}	lbf/ft ²	2100	2958	6837
Ko ^{nc}	-	0.5933	0.5933	0.5933
R _f	-	0.9	0.9	0.9
R _{inter}	-	0.64	0.64	0.64
Ko	-	0.7	0.67	0.7
OCR	-	1.3	1.3	1.700

	Soil parameters for cohesionless materials						
Identification	units	Fill	Silty Sand	Lower Silty Sand			
Drainage Type		Drained	Drained	Drained			
Yunsat	lb/ft ³	115.0	128.0	130.0			
γsat	lb/ft ³	115.0	128.0	130.0			
E ₅₀ ref	lb/ft ²	278.0E3	1.169E+6	2.151E+6			
E _{oed} ^{ref}	lb/ft ²	270.0E3	1.000E+6	2.000E+6			
Eur ^{ref}	lb/ft ²	833.0E3	3.506E+6	6.455E+6			
power (m)	-	0.5000	0.5000	0.5000			
Cref	lb/ft ²	1.000	1.000	1.000			
φ (phi)	deg	32.00	36.00	37.00			
ψ	deg	0.000	6.000	7.000			
γ0.7	-	1.500E-4	1.500E-4	1.500E-4			
Go ^{ref}	lb/ft ²	463.0E3	1.950E+6	2.290E+7			
V _{ur}	-	0.2	0.2	0.2			
p _{ref}	lb/ft ²	547.0	2508	3945.0			
Ko ^{nc}	-	0.4701	0.4100	0.4408			
R _f	-	0.9000	0.9000	0.9000			
R _{inter}	-	0.6300	0.6100	0.6100			
Ko	-	0.4921	0.4260	0.4599			
OCR	-	1.100	1.100	1.100			

Table 3-8: PLAXIS applied HS_{small} parameters for cohesionless soils

Table 3-9: PLAXIS applied parameters for jet grout plug

Identification	units	Grout plug	
Material Model	Mohr-Coulomb Drained		
γ_{unsat}	lb/ft ³	140	
γ _{sat}	lb/ft ³	140	
E	lb/ft ²	54.30E6	
v'		0.2	
G	lb/ft ²	22.62E6	
E _{oed}	lb/ft ²	60.33E6	
Cref	lb/ft ²	36.00E3	
φ (phi)	deg	40	
ψ_{unsat}	lb/ft ²	32.81E3	
Ко		0.3572	

3.2.3 Structural parameters

We modeled the soldier piles at 5 ft on center with plate elements and derived structural parameters for a bare W18x130 above EL. -11 SFCD and a W18x130 with 4 ksi concrete below EL -11 SFCD. We modeled the top strut as a node to node anchor and accounted for the spacing of the strut out-of-plane as either 40 ft on center for the initial excavation stage or 20 ft on center for the final excavation stage. Our modeled effective strut stiffness included the waler stiffness in series.

Parameter	Units	Soldier Pile				
			W18x130 with 4 ksi			
Section	-	W18x130	concrete			
spacing	ft	5	5			
E	lb/ft ²	4,176.0E+6	4,176.0E+6			
А	ft²	0.2660	0.9228			
I	ft⁴	0.1186	0.4085			
v	-	0.2	0.2			

Table 3-10: PLAXIS embedded pile row elements (soldier pile) structural parameters

Table 3-11: PLAXIS Fixed node anchor (Strut) structural parameters

Parameter	Units	Strut Initial Excavation	Strut Final Excavation
Strut Section	-	W12x120	W12x120
Waler Section	-	W27x146	W27x146
L _{strut}	ft	10	10
Spacing	ft	40	20
Strut EA1	lbf	1,021E+6	1,021E+6
k _{strut}	lbf/ft	102.1E+6	102.1E+6
\mathbf{k}_{waler}	lbf/ft	4.104E+6	32.83E+6
k _{eff}	lbf/ft	3.945E+6	24.84E+6
EA _{eff}	lbf	39.4E+6	248.4E+6

3.2.4 Construction stages

Our PLAXIS 2D analysis evaluated various construction stages with varying groundwater conditions and surcharges. Table 3-12 summarizes our staged-construction analysis steps. Figure 3-16 through Figure 3-18 illustrate the construction stages for the GWH case. Table 3-13 shows the different groundwater and loading scenarios that we used to evaluate demands and deformations.

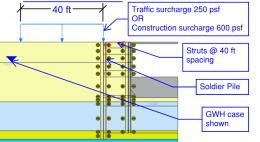
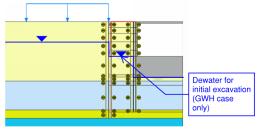

Table 3-12. 1 EAXID Construction stages								
Stage		Groundwate	er Elevation	Strut	Vertical	Excavation	Excavation	
number	Stage Description	GWH Case	GWL Case	spacing	Surcharge	Depth	Elevation	
		(ft. SFCD)	(ft. SFCD)	(ft)		(ft.)	(ft. SFCD)	
0	Initial Phase			-	-			
4	Install soldier pile, struts	-7						
1	Add surcharge					-	2.8	
2	Dewater							
	Initial Excavation to			40	Traffic			
3	remove (E) structure and		22		250 psf			
	tiebacks	-14	-23		OR			
4	Backfill				Construction	12.0	11	
5	Install jet grout plug				600 psf	13.8	-11	
6	Install and preload							
0	additional struts			20				
7	Dewater to B.O.E	-28		20				
8	Excavate to B.O.E	-28				26.8	-24	

Table 3-12: PLAXIS Construction stages


Table 3-13: Groundwater and loading scenarios

Scenario	Groundwater case	Surcharge	Shoring system
А	GWH	Construction Surcharge	
В	GWH	Traffic surcharge	Initial: Top strut at 40 ft spacing,
С	GWL	Construction Surcharge	Final: Top struts at 20 ft spacing
D	GWL	Traffic surcharge	

Stage 1: Install soldier pile and initial struts

Stage 2: Dewater Excavation (GWH case only)

Stage 3: Initial Excavation

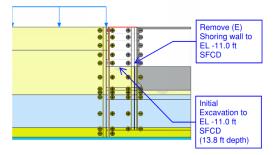
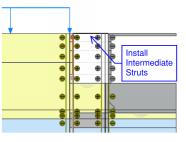



Figure 3-16: PLAXIS construction stages 1-3

Stage 5: Jet-grout

Stage 6: Install additional struts

Stage 7: Dewater

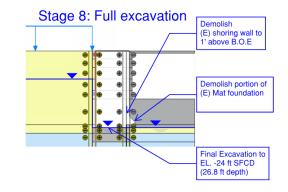
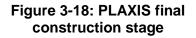




Figure 3-17: PLAXIS construction stages 5-7

3.2.5 PLAXIS soil-structure interaction results

Table 3-14 briefly describes and presents the deflection and **Table 3-15** summarizes the strut axial demands at critical stages for each scenario. **Figure 3-19 through Figure 3-21** show the Plaxis output for Scenario A.

	Scenario	A GWH- Construction	B GWH-Traffic	C GWL- Construction	D GWL-Traffic		
	Stage	Maximum horizontal wall movement (+ towards excavation in inches)					
3	Initial Excavation	0.80 in.	0.39 in.	0.48 in.	0.26 in.		
8	Final Excavation	0.90 in.	0.56 in.	0.59 in.	0.42 in.		

 Table 3-14: Description of scenarios and maximum horizontal wall movement

Table 3-15: Strut axial demands

	Scenario	A GWH-Surcharge	B GWH-Traffic	C GWL-Surcharge	D GWL-Traffic	
	Stage	Maximum Anchor force (- compression in kip)				
3	Initial Excavation	-238 kip	-120 kip	-137 kip	-97 kip	
8	Final Excavation	-260 kip	-161 kip	-187 kip	-134 kip	

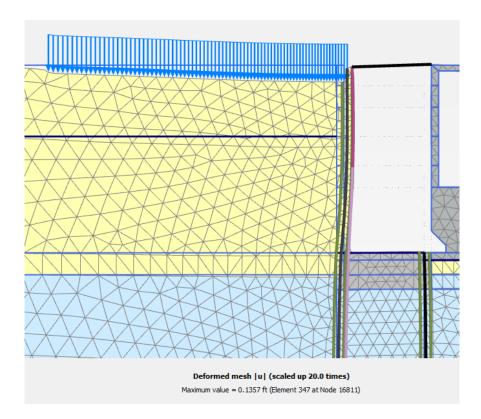


Figure 3-19: Deformed shape (Scenario A Stage 8 Final Excavation, Scale x20)

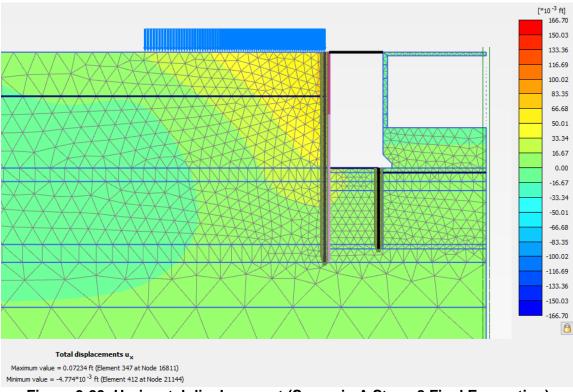
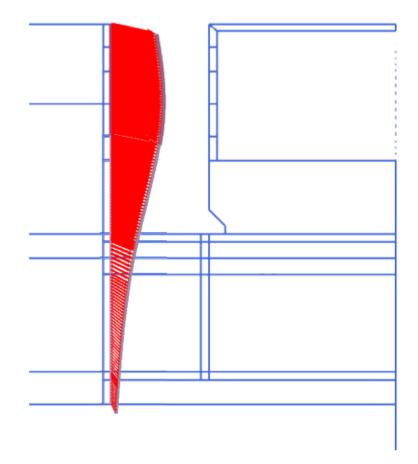



Figure 3-20: Horizontal displacement (Scenario A Stage 8 Final Excavation)

3.3 Considerations for Existing Structure

The support of excavation will actively brace against the existing tower structure at the ground level through the HSS struts. We positioned the struts to align with the Level 1 floor slab of the tower to ensure load transfer directly through bearing. The floor is a 12" normal weight concrete slab with a design compressive strength of 5 ksi. We are providing a bearing plate capable of engaging a 24 in. by 12 in. area of the existing structure. We calculated the LRFD capacity of the concrete in bearing using ACI and applied a 1.6 load factor to our strut load per ASCE 7. Table 3-16 below shows the design DCR.

Bearing on Existing Concrete						
Shoring Member	LRFD Demand	LRFD Capacity	Controlling DCR			
Strut Bearing Plate	536	795	0.67			

Table 3-16: Existing Tower Concrete Bearing DCR Table

3.4 Design of Excavator Platform

The Contractor plans to support an excavator above the shoring wall struts during construction. The platform is designed to span between the shoring struts. In the first stage of excavation to remove the existing tiebacks, the struts will be spaced at a maximum of 41 feet. In the second stage of excavation, the spacing of the struts is reduced to 22 feet. Therefore, the platform design is governed by the first excavation stage. We designed the platform capable to support the proposed CAT 325F excavator and up to 250 psf live load for the governing span.

We created a SAP2000 beam model to evaluate the demands on the platform. We used section designer to model the actual section and applied moving loads which represented the full load of the excavator. We also included a 1.33 impact factor and applied a 1.2 dead load factor and 1.6 live load factor consistent with ASCE 7-10. Figure 3-22 below shows our analysis model.

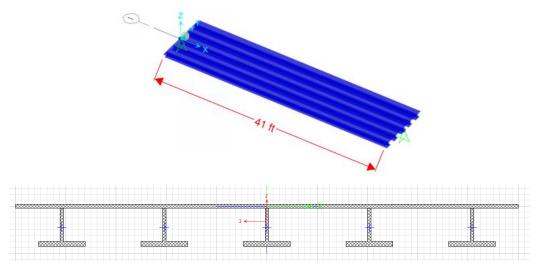


Figure 3-22: SAP2000 Analysis Model

The design section utilizing a 1 in. thick plate meets demands for a 41 ft span and provides deflection performance of L/250 for the dead load and excavator. Table 3-17 below presents the excavator platform DCR summary table for bending and shear demands. Our design calculations are presented in Appendix A.

Excavator Platform						
Demand	LRFD Demand	LRFD Capacity	Controlling DCR			
Bending (kip-ft)	2175	3227	0.67			
Shear (kips)	217	960	0.23			

 Table 3-17: Excavator Platform DCR Table

4. ANALYSIS AND DESIGN OF PG&E VAULT BRACING

During construction, two (2) existing PG&E vaults along Fremont Street will remain in place and be supported on the installed shoring system.

4.1 Vault Details

We received vault details and estimated weights from the Civil Engineer. The total weights listed include the vault self-weight and equipment located in the vault. The #5 and #7 vaults have approximate weights of 5.6 kips and 20.5 kips, respectively. Figure 4-1 below shows schematic drawings we received of the PG&E vaults. The boxes are equipped with "pull irons" which were used to lift the vaults into positions during their initial installation.

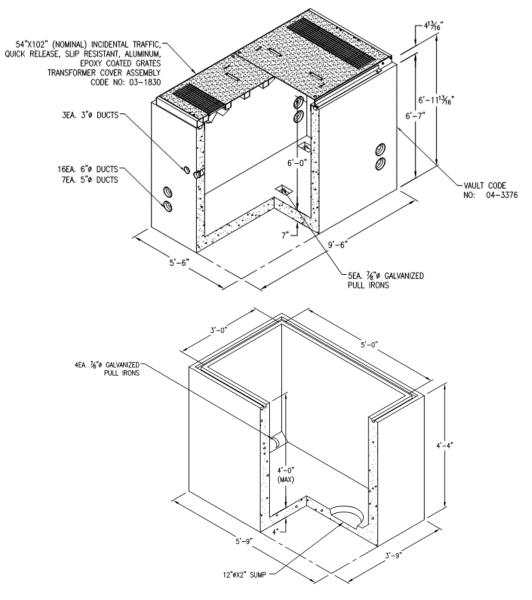


Figure 4-1: PG&E Vault Drawings (#7 top, #5 bottom)

4.2 Design of Supports

We designed the vaults to be supported from the bottom with steel channel members. The channels will be hung by angles positioned at the vault corners. The angles will be stabilized temporarily by epoxy anchors before the channels are installed beneath the vaults. We designed the supports at the bottom at locations near the pull irons that were used to lift and install the vaults initially. This allows a similar loading of the vault in it's intended direction and ensures the vault will not be under excessive stress due to its self-weight.

The drawings show the construction sequence and support framing of the vaults. The angles will then attach to W24 deck beams which are supported on the shoring wall and the existing building. The HSS braces on the W24 beams restrain lateral movement of the vaults during construction. The channel supports are also connected to the existing soldier piles to provide lateral restraint during jet grouting. Our design calculations are presented in Appendix A. Figure 4-2 below shows an overview of the support framing in relation to the shoring system and existing structure.

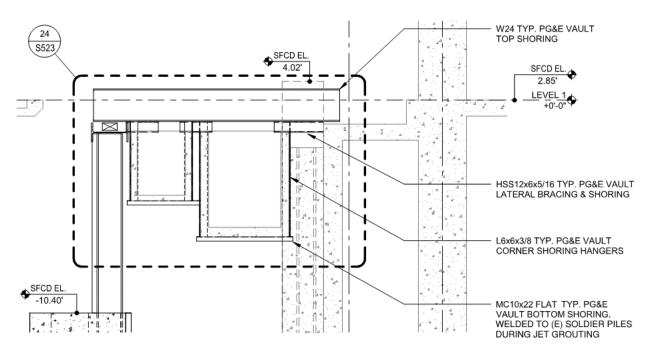


Figure 4-2: Elevation View of PG&E Vaults and Support Framing

5. SUMMARY

We analyzed and designed the support of excavation system for the excavation for the voluntary retrofit. Our shoring plan includes the support of the existing PG&E vault in place during excavation.

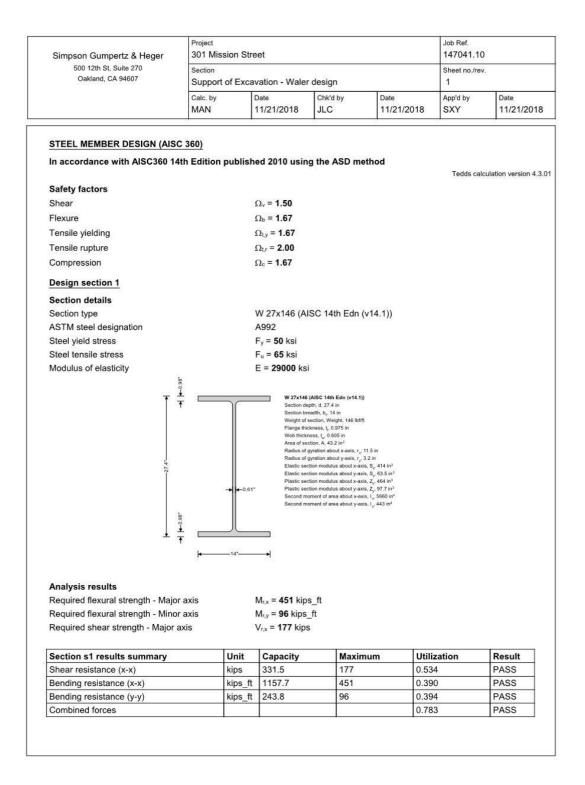
We modeled the shoring system in SAP2000 with the loads and support conditions for each stage. Our SAP2000 analysis model included non-linear p-y springs to evaluate the deflection of the shoring system for each construction stage. We considered the different ground water tables based upon field measurements and construction/traffic surcharge cases and applied them to our SAP2000 analysis model. Section 3.1.4 summarizes our SAP2000 output and demand to capacity checks. Appendix A shows the detailed SOE structural calculations. Our SAP2000 analysis shows a maximum deflection 0.90 in. and strut axial compression of 335 kips (ASD).

We also modeled an independent PLAXIS 2D analysis model to verify the deformations from our SAP2000 analysis model. Our PLAXIS model also included a detailed construction sequence that considered the different ground water and surcharge cases. Section 3.2.5 summarizes our PLAXIS output for the SOE. Our PLAXIS analysis results are generally consistent with the SAP2000 analysis results.

Our design calculations of the structural support to the PG&G vaults concluded that the PG&E vaults should be secured against all undesirable movements during all of the planned construction stages.

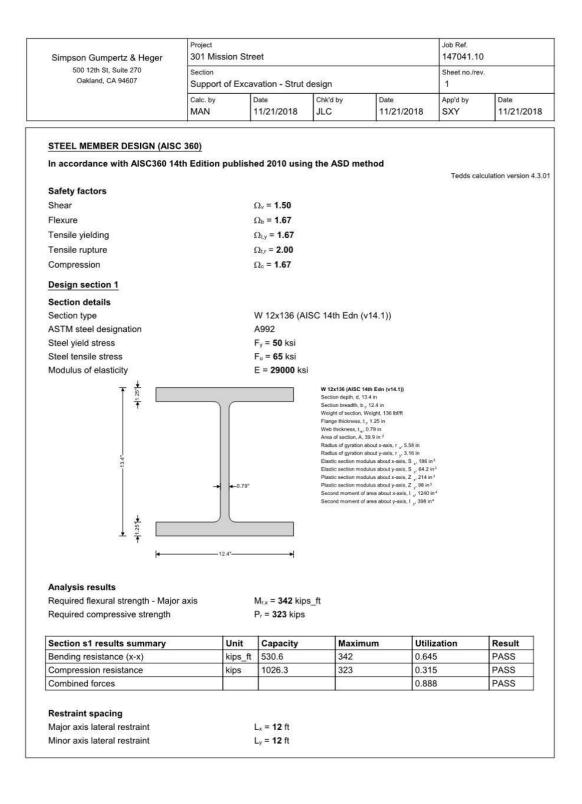
Note that all elevations shown are for reference and may vary in the field. Contractor shall verify all elevations in the field prior to installation of the SOE system.

\\fs1-sfo\data\Projects\2014\147041.10-301S\Reports\2018_09_Shoring Design\Final Design Report\2018-12-05 Shoring Design Report.docx


APPENDIX A: SHORING CALCULATIONS

Structural Design Check Sample Calculations

Simpson Gumpertz & Heger	Project 301 Mission Str	eet			Job Ref. 147041.1	147041.10	
500 12th St, Suite 270 Oakland, CA 94607	Section Support of Exca	Section Support of Excavation					
	Calc. by MAN	8 App'd by SXY	Date 11/21/20				
STEEL MEMBER DESIGN (AIS	C 360)						
In accordance with AISC360 14	th Edition publish	ned 2010 usin	g the ASD me	ethod	Tedds c	alculation version 4	
Safety factors							
Shear		Ω _v = 1.50					
Flexure		Ω _b = 1.67					
Tensile yielding		Ω _{t,y} = 1.67					
Tensile rupture		Ω _{t,r} = 2.00					
Compression		Ω _c = 1.67					
Design section 1							
Section details				1 1010-1020			
Section type		W 18x130 (Al	SC 14th Edn	(v14.1))			
ASTM steel designation		A992					
Steel yield stress		F _y = 50 ksi					
Steel tensile stress		F _u = 65 ksi					
Modulus of elasticity		E = 29000 ks					
Analysis results Required flexural strength - Majo	⊨ 11.2 ⁻	Radius Elastic : Elastic : Plastic : Plastic : Second	of gyration about x-axis, section modulus about y- section modulus about y- section modulus about y- section modulus about y- moment of area about y- moment of area about y-	r _v 2.7 in axis, S _v 256 in ³ axis, S _v 49.9 in ³ axis, Z _v 290 in ³ axis, Z _v 76.7 in ³ -axis, I _x 2460 in ⁴			
		$V_{r,x} = 67$ kips	5_11				
Required shear strength - Major		$P_r = 100 \text{ kibs}$					
		P _r = 100 kips					
Required shear strength - Major Required compressive strength Section s1 results summary	Unit	Capacity	Maxin		Jtilization	Result	
Required shear strength - Major Required compressive strength Section s1 results summary Shear resistance (x-x)	kips	Capacity 258.6	67	().259	PASS	
Required shear strength - Major Required compressive strength Section s1 results summary Shear resistance (x-x) Bending resistance (x-x)	kips kips_ft	Capacity 258.6 723.6	67 342	().259).473	PASS PASS	
Required shear strength - Major Required compressive strength Section s1 results summary Shear resistance (x-x)	kips	Capacity 258.6	67).259	PASS	

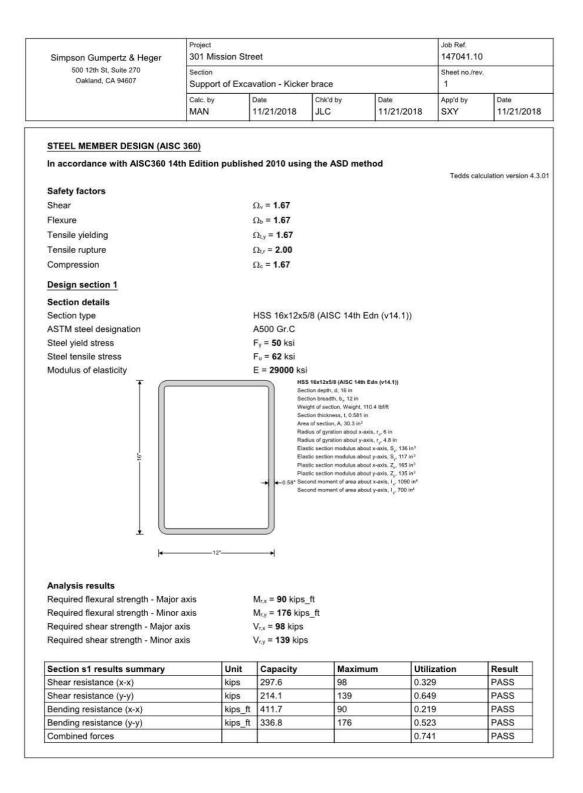

Simpson Gumpertz & Heger	Project 301 Mission S	Street	Job Ref. 147041.10			
500 12th St, Suite 270 Oakland, CA 94607	Section Support of Ex	cavation			Sheet no./rev. 2	
	Calc. by MAN	Calc. by Date Chk'd by Date			App'd by SXY	Date 11/21/2018
101 1000 10 10 10 10		ý.		AT.	d -	12
Restraint spacing						
Major axis lateral restraint		$L_x = 15 \text{ ft}$				
Minor axis lateral restraint Torsional restraint		L _y = 0 ft L _z = 15 ft				
	ool huskling C					
Classification of sections for lo	10000 - CONSTRUCT					
Classification of flanges in flex	ure - Table B4.1		67			
Width to thickness ratio		$b_r / (2 \times t_r) = 4.$				
Limiting ratio for compact section		$\lambda_{\text{pff}} = 0.38 \times \sqrt{[}$				
Limiting ratio for non-compact section		$\lambda_{\rm rff} = 1.0 \times \sqrt{[E]}$	/ ⊢ _y] = 24.08	Compact		
Classification of web in flexure	- Table B4.1b (case 15)				
Width to thickness ratio		(d - 2 × k) / t _w :	= 24.03			
Limiting ratio for compact section		λ_{pwf} = 3.76 × $$	[E / F _y] = 90.55			
Limiting ratio for non-compact see	tion	$\lambda_{rwf} = 5.70 \times \sqrt{10}$	E / F _y] = 137.27	Compact		
				S	ection is co	mpact in flexu
Classification of flanges in unif	orm compressi	on - Table B4.1a	(case 1)			
Width to thickness ratio		$b_f / (2 \times t_f) = 4.67$				
Limiting ratio for non-compact see	ction	$\lambda_{rfc} = 0.56 \times \sqrt{[}$	E / F _y] = 13.49	Nonslend	er	
Classification of web in uniform	n compression	- Table B4.1a (ca	ase 5)			
Width to thickness ratio	•	(d - 2 × k) / t _w =				
Limiting ratio for non-compact sec	tion	$\lambda_{\rm rwc} = 1.49 \times \sqrt{100}$	[E / F _v] = 35.88	Nonslend	er	
				Section is	nonslender	in compressio
Design of members for compre	ssion - Chapter	E				
Required compressive strength		P _r = 100 kips				
Slenderness limitations and eff	ective length -	Section E2				
Unbraced length	ective length	L _{b.x} = 15 ft				
Effective length factor		K _x = 1.00				
Column slenderness		$\lambda_x = K_x \times L_{b,x} /$	r _v = 22.416			
	Major a	xis column slen		oes not excee	d recommer	ded limit of 20
Flexural buckling of members v						
Elastic critical buckling stress - ec				569 6 kei		
Flexural buckling stress - eq E3-2		$F_{e,x} = \pi^2 \times E / (K_x \times L_{b,x} / r_x)^2 = 569.6 \text{ ksi}$ $F_{cr,x} = [0.658^F_y / F_{e,x}] \times F_y = 48.2 \text{ ksi}$				
Nominal compressive strength for		and the second s	e,xj × ⊏y - 40.2	NOI		
Rominal compressive sureligui ior			A = 1845.9 kips			
Torsional and torsional-flexura	buckling of me		14 13 (510 1	ts - Section F	1	
Unbraced length	bucking of the	$L_{b,z} = 15 \text{ ft}$	stender elemen	ta - occuon E-		
Effective length factor		$K_z = 1.00$				
Flexural-torsional elastic buckling	stress - ea E4-4		C _w / (K _z × L _{b,z}) ² +	$G \times J$] / ($I_x + I_y$)) = 132.3 ksi	
Flexural-torsional buckling stress	the effect to the	and the second s	F _e] × F _v = 42.7 ks	. 51 0849 255		
Nominal compressive strength for	and the second second					
	120220000000000000000000000000000000000		= 1634.8 kips			

Simpson Gumpertz & Heger	Project 301 Missio	n Street			Job Ref. 147041.10				
500 12th St, Suite 270	Section				Sheet no./re	1.			
Oakland, CA 94607	Support of	Excavation		3					
	Calc. by MAN	Date 11/21/2018	Chk'd by JLC	Date 11/21/2018	App'd by SXY	Date 11/21/2018			
Allowable compressive strengt	h - E1		A 102	W7+					
Nominal compressive strength		$P_n = min(P_{n,fb})$,x, P _{n,ftb}) = 163	4.8 kips					
Allowable compressive strength		$P_c = P_n / \Omega_c =$	978.9 kips						
		Pr / Pc = 0.10	$P_r / P_c = 0.102$						
	PA	SS - Nominal com	pressive stre	ength exceeds red	quired comp	ressive streng			
Design of members for shear -	Chapter G								
Required shear strength		V _{r,x} = 67 kips							
Web area		$A_w = d \times t_w =$	12.931 in ²						
Web plate buckling coefficient		k _v = 5							
		$(d - 2 \times k) / t_w \le 2.24 \times \sqrt{(E / F_y)}$							
Web shear coefficient - eq G2-2		$C_v = 1.000$							
Nominal shear strength - eq G2-	l	$V_{n,x} = 0.6 \times F_y \times A_w \times C_v = 387.9$ kips							
Safety factor		$\Omega_{\rm v} = 1.50$							
Allowable shear strength		$V_{c,x} = V_{n,x} / \Omega_{c}$, = 258.6 kips						
		V _{r.x} / V _{c.x} = 0.259							
		PASS -	Allowable sh	ear strength exce	eds require	d shear streng			
Design of members for flexure	- Chapter F								
Required flexural strength		M _{r,x} = 342 kip	s_ft						
Yielding - Section F2.1									
Nominal flexural strength for yield	ling - eq F2-1	$M_{n,yld,x} = M_{p,x}$	= F _y × Z _x = 12	08.3 kips_ft					
Allowable flexural strength - F	1070 10								
Nominal flexural strength		Max = Maydax	= 1208.3 kips	ft					
Allowable flexural strength			$M_{cx} = M_{n,x} / \Omega_b = 723.6 \text{ kps}_{ft}$ ft						
, normalized in the starting in		$M_{r,x} / M_{c,x} = 0.473$							
		PASS - Allowable flexural strength exceeds required flexural strengt							
Design of members for combin	ed forces - C	hapter H							
Combined flexure and axial force			$M_{r,x} / M_{c,x} = 0$.524					
				ure and axial for	e is within a	acceptable lim			
		1000-5-10 (B)							

Simpson Gumpertz & Heger	Project 301 Mission	n Street			Job Ref. 147041.10	
500 12th St, Suite 270 Oakland, CA 94607	Section Support of	Excavation - Wale	design		Sheet no./rev 2	
	Calc. by MAN	Date 11/21/2018	Chk'd by JLC	Date 11/21/2018	App'd by SXY	Date 11/21/2018
Restraint spacing						
Major axis lateral restraint		$L_x = 5$ ft				
Minor axis lateral restraint		L _y = 5 ft				
Torsional restraint		L _z = 5 ft				
Classification of sections for lo	cal buckling	- Section B4				
Classification of flanges in flex	ure - Table B4	l.1b (case 10)				
Width to thickness ratio		$b_f / (2 \times t_f) = 7$.18			
Limiting ratio for compact section		$\lambda_{pff} = 0.38 \times v$	[E / F _y] = 9.15			
Limiting ratio for non-compact set	ction	$\lambda_{\rm rff} = 1.0 \times \sqrt{[E]}$	E / F _y] = 24.08	Compact		
Classification of web in flexure	- Table B4.1b	(case 15)				
Width to thickness ratio		(d - 2 × k) / t _w	= 39.47			
Limiting ratio for compact section		$\lambda_{pwf} = 3.76 \times 10^{-10}$	[E / F _v] = 90.55			
Limiting ratio for non-compact se	ction	$\lambda_{rwf} = 5.70 \times N$	[E / F _y] = 137.2			
-			-	s	ection is co	mpact in flexu
Design of members for shear -	Chapter G					
Required shear strength	enapter e	V _{r.x} = 177 kips	5			
Web area		$A_w = d \times t_w =$				
Web plate buckling coefficient		k _v = 5				
		(d - 2 × k) / t _w	<= 2.24 × √(E /	F _v)		
Web shear coefficient - eq G2-2		C _v = 1.000				
Nominal shear strength - eq G2-1		$V_{n,x} = 0.6 \times F_{r}$	$\times A_w \times C_v = 49$	7.3 kips		
Safety factor		Ω _v = 1.50				
Allowable shear strength		$V_{c,x} = V_{n,x} / \Omega_{y}$	= 331.5 kips			
		$V_{r,x} / V_{c,x} = 0.5$	534			
		PASS -	Allowable shea	r strength exce	eds required	d shear strengt
Design of members for flexure	- Chapter F					
Required flexural strength		M _{r.x} = 451 kip	s_ft			
Yielding - Section F2.1						
Nominal flexural strength for yield	ling - eq F2-1	$M_{n,yld,x} = M_{p,x}$	= F _y × Z _x = 1933	.3 kips_ft		
Lateral-torsional buckling - See	tion F2.2					
Unbraced length		$L_{b} = L_{v s1} = 5$	ft			
Limiting unbraced length for yield	ing - eq F2-5		× √(E / F _y) = 11	.303 ft		
Distance between flange centroid	s	h _o = 26.4 in				
n		c = 1				
		r _{ts} = 3.76 in				
Limiting unbraced length for inela	stic LTB - eq F	2-6 $L_r = 1.95 \times r_{ts}$	\times E / (0.7 \times F _y)	$\times (J \times c / (S_x \times$	h₀)) + √((J ×	$c / (S_x \times h_o))^2 +$
		$6.76\times$ (0.7 \times	F _y / E) ²)) = 33.3	43 ft		
			$L_b \leq L_p$	- Lateral-torsio	nal buckling	does not app
Allowable flexural strength - F1						
Nominal flexural strength		$M_{n,x} = M_{n,yid,x}$	= 1933.3 kips_ft			
Allowable flexural strength		$M_{c,x} = M_{n,x} / \Omega$	b = 1157.7 kips	_ft		

500 12th St, Suite 270 Oakland, CA 94607 Design of members for flexure - C Required flexural strength Yielding - Section F6.1 Nominal flexural strength for yielding Compression flange local bucklin Nominal flexural strength for compres Allowable flexural strength - F1 Nominal flexural strength Allowable flexural strength Allowable flexural strength Combined flexural strength	Calc. by MAN Chapter F Ig - eq F6-1 Ing - Section ression flange d forces - Ch	$M_{r,y} = 96 \text{ kips}$ $M_{n,yd,y} = M_{p,y}$ F6.2 $\lambda = br / (2 \times tr$ e local buckling - e $M_{n,fib,y} = M_{p,y}$ $M_{n,y} = \min(M_r$ $M_{c,y} = M_{n,y} / G$ $M_{r,y} / M_{c,y} = 0$ PASS - Allo hapter H $M_{r,x} / M_{c,x} + M$	Chk'd by JLC .390 wable flexura 5-ft = min(Fy × Zy, - 4) = 7.179 eq F6-2 = 407.1 kips_ft hydd, Mn,fib.y) = 4 2b = 243.8 kips .394 wable flexura Ar,y / Mc,y = 0.78	407.1 kips_ft _ft // strength exceed	7.1 kips_ft ds required t	Date 11/21/2018 flexural streng
Required flexural strength Yielding - Section F6.1 Nominal flexural strength for yielding Compression flange local bucklin Nominal flexural strength for compre Allowable flexural strength - F1 Nominal flexural strength Allowable flexural strength Design of members for combined	MAN Chapter F Ig - eq F6-1 Ing - Section ression flange d forces - Ch	$11/21/2018$ $M_{r,x} / M_{c,x} = 0$ $PASS - Allo$ $M_{r,y} = 96 \text{ kips}$ $M_{n,yd,y} = M_{p,y}$ $F6.2$ $\lambda = b_f / (2 \times t_f$ $b \text{ local buckling - e}$ $M_{n,fib,y} = M_{p,y}$ $M_{n,y} = \min(M_r$ $M_{c,y} = M_{n,y} / \Omega$ $M_{r,y} / M_{c,y} = 0$ $PASS - Allo$ hapter H $M_{r,x} / M_{c,x} + N$	JLC .390 <i>pwable flexura</i> s_ft = min(Fy × Zy,) = 7.179 eq F6-2 = 407.1 kips_ft nyid,y, Mn,fib,y) = 4 2b = 243.8 kips .394 <i>pwable flexura</i> Ar,y / Mc,y = 0.78	11/21/2018 If strength exceed 1.6 × F _y × S _y) = 40 407.1 kips_ft _ft If strength exceed 3	SXY ds required a 7.1 kips_ft ds required a	11/21/2011
Required flexural strength Yielding - Section F6.1 Nominal flexural strength for yielding Compression flange local bucklin Nominal flexural strength for compre Allowable flexural strength Allowable flexural strength Allowable flexural strength Design of members for combined	ng - eq F6-1 ng - Section ression flange d forces - Ch	$PASS - AlloM_{r,y} = 96 kipsM_{n,yd,y} = M_{p,y}$ F6.2 $\lambda = br / (2 \times tre local buckling - eM_{n,fib,y} = M_{p,y} = M_{n,y} = M_{n,y} = M_{n,y} / S_{n,y}$ M_{n,y} = min(M_r M_{r,y} / M_{c,y} = 0 PASS - Allo mapter H M_{r,x} / M_{c,x} + M	example flexura ft = min(Fy × Zy, ·) = 7.179 pq F6-2 = 407.1 kips_ft hyddy, Mn,fiby) = 4 2b = 243.8 kips .394 example flexura Mr,y / Mc,y = 0.78	1.6 × F _y × S _y) = 40 407.1 kips_ft _ft <i>ol strength excee</i>	7.1 kips_ft ds required t	flexural streng
Required flexural strength Yielding - Section F6.1 Nominal flexural strength for yielding Compression flange local bucklin Nominal flexural strength for compre Allowable flexural strength Allowable flexural strength Allowable flexural strength Design of members for combined	ng - eq F6-1 ng - Section ression flange d forces - Ch	$M_{r,y} = 96 \text{ kips}$ $M_{n,yd,y} = M_{p,y}$ F6.2 $\lambda = br / (2 \times tr$ e local buckling - e $M_{n,fib,y} = M_{p,y}$ $M_{n,y} = \min(M_r$ $M_{c,y} = M_{n,y} / G$ $M_{r,y} / M_{c,y} = 0$ PASS - Allo hapter H $M_{r,x} / M_{c,x} + M$	s_ft = min(F _y × Z _y , ·) = 7.179 pq F6-2 = 407.1 kips_ft hyddy, Mn,fiby) = 4 2b = 243.8 kips .394 bwable flexura Mr,y / Mc,y = 0.78	1.6 × F _y × S _y) = 40 407.1 kips_ft _ft <i>ol strength excee</i>	7.1 kips_ft ds required t	flexural streng
Required flexural strength Yielding - Section F6.1 Nominal flexural strength for yielding Compression flange local bucklin Nominal flexural strength for compre Allowable flexural strength - F1 Nominal flexural strength Allowable flexural strength Design of members for combined	ng - eq F6-1 ng - Section ression flange d forces - Ch	$M_{n,yd,y} = M_{p,y}$ F6.2 $\lambda = b_f / (2 \times t_f$ e local buckling - e $M_{n,flb,y} = M_{p,y}$ $M_{n,y} = \min(M_r$ $M_{c,y} = M_{n,y} / \Omega$ $M_{r,y} / M_{c,y} = 0$ PASS - Allo hapter H $M_{r,x} / M_{c,x} + N$	= min($F_y \times Z_y$, a) = 7.179 eq F6-2 = 407.1 kips_ft h,yd,y, Mn,fb,y) = 4 2b = 243.8 kips .394 bwable flexura $A_{r,y} / M_{c,y} = 0.78$	407.1 kips_ft _ft I strength exceed 3	ds required	
Nominal flexural strength for yielding Compression flange local bucklin Nominal flexural strength for compre Allowable flexural strength - F1 Nominal flexural strength Allowable flexural strength Design of members for combined	ng - Section ession flange d forces - Ch	F6.2 $\lambda = b_{f} / (2 \times t_{f}$ e local buckling - e $M_{n,fib,y} = M_{p,y} = M_{n,y} / M_{c,y} = M_{n,y} / M_{n,y} / M_{n,y} = M_{n,y} / M_{n,y} = M_{n,y} / M_{n,y}$	$p_{\rm p} = 7.179$ $p_{\rm eq} \ F6-2 = 407.1 \ {\rm kips_ft}$ $n_{\rm y/d,y}, \ M_{\rm n,fb,y}) = 4$ $2_{\rm b} = 243.8 \ {\rm kips_y}$ $.394$ $bwable \ flexura$ $M_{\rm r,y} \ / \ M_{\rm c,y} = 0.78$	407.1 kips_ft _ft I strength exceed 3	ds required	
Nominal flexural strength for yielding Compression flange local bucklin Nominal flexural strength for compre Allowable flexural strength Allowable flexural strength Allowable flexural strength Design of members for combined	ng - Section ession flange d forces - Ch	F6.2 $\lambda = b_{f} / (2 \times t_{f}$ e local buckling - e $M_{n,fib,y} = M_{p,y} = M_{n,y} / M_{c,y} = M_{n,y} / M_{n,y} / M_{n,y} = M_{n,y} / M_{n,y} = M_{n,y} / M_{n,y}$	$p_{\rm p} = 7.179$ $p_{\rm eq} \ F6-2 = 407.1 \ {\rm kips_ft}$ $n_{\rm y/d,y}, \ M_{\rm n,fb,y}) = 4$ $2_{\rm b} = 243.8 \ {\rm kips_y}$ $.394$ $bwable \ flexura$ $M_{\rm r,y} \ / \ M_{\rm c,y} = 0.78$	407.1 kips_ft _ft I strength exceed 3	ds required	
Nominal flexural strength for compre Allowable flexural strength - F1 Nominal flexural strength Allowable flexural strength Design of members for combined	ession flange d forces - Ch	$\begin{split} \lambda &= b_{f} / (2 \times t_{f} \\ e \text{ local buckling - e} \\ M_{n,fib,y} &= M_{p,y} \\ M_{n,y} &= \min(M_{r} \\ M_{c,y} &= M_{n,y} / \Omega \\ M_{r,y} / M_{c,y} &= 0 \\ PASS - Allo \\ hapter H \\ M_{r,x} / M_{c,x} + M \end{split}$	eq F6-2 = 407.1 kips_ft n,yid,y, Mn,fib,y) = 4 2b = 243.8 kips .394 <i>owable flexura</i> Mr,y / Mc,y = 0.78	407.1 kips_ft _ft I strength exceed 3	2	
Nominal flexural strength for compre Allowable flexural strength - F1 Nominal flexural strength Allowable flexural strength Design of members for combined	ession flange d forces - Ch	$\begin{split} \lambda &= b_{f} / (2 \times t_{f} \\ e \text{ local buckling - e} \\ M_{n,fib,y} &= M_{p,y} \\ M_{n,y} &= \min(M_{r} \\ M_{c,y} &= M_{n,y} / \Omega \\ M_{r,y} / M_{c,y} &= 0 \\ PASS - Allo \\ hapter H \\ M_{r,x} / M_{c,x} + M \end{split}$	eq F6-2 = 407.1 kips_ft n,yid,y, Mn,fib,y) = 4 2b = 243.8 kips .394 <i>owable flexura</i> Mr,y / Mc,y = 0.78	407.1 kips_ft _ft I strength exceed 3	2	
Allowable flexural strength - F1 Nominal flexural strength Allowable flexural strength Design of members for combined	d forces - Ch	$\begin{split} M_{n,flb,y} &= M_{p,y} \\ M_{n,y} &= \min(M_r \\ M_{c,y} &= M_{n,y} \ / \ & \Omega_{r,y} \ / \ M_{c,y} = 0 \\ \hline PASS - Allo \\ \hline mapter H \\ M_{r,x} \ / \ M_{c,x} + M \end{split}$	= 407.1 kips_ft n,yid,y, Mn,fib,y) = 4 2b = 243.8 kips .394 <i>bwable flexura</i> M _{r,y} / M _{c,y} = 0.78	407.1 kips_ft _ft I strength exceed 3	2	
Nominal flexural strength Allowable flexural strength Design of members for combined		$M_{n,y} = \min(M_r$ $M_{c,y} = M_{n,y} / G$ $M_{r,y} / M_{c,y} = 0$ $PASS - Allo$ hapter H $M_{r,x} / M_{c,x} + N$	n.yid.y, M _{n.fib.y}) = 4 2 _b = 243.8 kips .394 <i>owable flexura</i> M _{r.y} / M _{c.y} = 0.78	407.1 kips_ft _ft I strength exceed 3	2	
Nominal flexural strength Allowable flexural strength Design of members for combined		M _{c,y} = M _{n,y} / Ω M _{r,y} / M _{c,y} = 0 <i>PASS - Allo</i> napter H M _{r,x} / M _{c,x} + N	2 _b = 243.8 kips .394 <i>bwable flexura</i> M _{r.y} / M _{c.y} = 0.78	_ft I strength exceed 3	2	
Allowable flexural strength Design of members for combined		M _{c,y} = M _{n,y} / Ω M _{r,y} / M _{c,y} = 0 <i>PASS - Allo</i> napter H M _{r,x} / M _{c,x} + N	2 _b = 243.8 kips .394 <i>bwable flexura</i> M _{r.y} / M _{c.y} = 0.78	_ft I strength exceed 3	2	
Design of members for combined		M _{r,y} / M _{c,y} = 0 <i>PASS - Allo</i> napter H M _{r,x} / M _{c,x} + M	.394 owable flexura M _{r.y} / M _{c.y} = 0.78	l strength exceed	2	
		PASS - Allo napter H M _{r.x} / M _{c.x} + N	wable flexura M _{r.y} / M _{c,y} = 0.78	3	2	
		napter H M _{r,x} / M _{c,x} + M	M _{r.y} / M _{c.y} = 0.78	3	2	
		M _{r,x} / M _{c,x} + N			ce is within a	acceptable lin

Simpson Gumpertz & Heger	Project 301 Missio	n Street			Job Ref. 147041.10	
500 12th St, Suite 270 Oakland, CA 94607	Section	Europhica Ohert	4 - 1		Sheet no./rev	
	100000000000000000000000000000000000000	Excavation - Strut		1	2	
	Calc. by MAN	Date 11/21/2018	Chk'd by JLC	Date 11/21/2018	App'd by SXY	Date 11/21/2018
Torsional restraint		L _z = 12 ft			Here P	
Classification of sections for lo	cal buckling	- Section B4				
Classification of flanges in flex	ure - Table B	4.1b (case 10)				
Width to thickness ratio		$b_f / (2 \times t_f) = 4$.96			
Limiting ratio for compact section		$\lambda_{pff} = 0.38 \times \sqrt{100}$	[E / F _y] = 9.15			
Limiting ratio for non-compact se	ction	$\lambda_{\rm rff} = 1.0 \times \sqrt{[E]}$	E / Fy] = 24.08	Compact		
Classification of web in flexure	- Table B4.1	case 15)	N 859 - 1001	54.5 3 43558		
Width to thickness ratio	10010 0 1111	(d - 2 × k) / t _w	= 12.28			
Limiting ratio for compact section			V[E / F _v] = 90.55			
Limiting ratio for non-compact section		1000	[E / F _v] = 137.2			
Limiting ratio for non-compact set	CUON	7. nwt = 3.70 × 1	[[/ Fy] = 137.2		action is co	mpact in flexure
	.			0	ection is co	inpact in nexure
Classification of flanges in unit	form compres					
Width to thickness ratio		$b_f / (2 \times t_f) = 4$		1212 F. F. F.		
Limiting ratio for non-compact se	ction	$\lambda_{\rm rfc} = 0.56 \times \sqrt{100}$	[E / F _y] = 13.49	Nonslend	ər	
Classification of web in uniform	n compressio	on - Table B4.1a (c	ase 5)			
Width to thickness ratio		(d - 2 × k) / t _w	= 12.28			
Limiting ratio for non-compact se	ction	$\lambda_{\text{rwc}} = 1.49 \times \sqrt{[\text{E} / \text{F}_y]} = 35.88$ Nonslender				
				Section is	nonslender	in compression
Design of members for compre	ssion - Chap	ter E				
Required compressive strength		P _r = 323 kips				
Slenderness limitations and ef	fective length	- Section E2				
Unbraced length		L _{b,x} = 12 ft				
Effective length factor		K _x = 1.00				
Column slenderness		$\lambda_x = K_x \times L_{b,x}$	r _x = 25.806			
	Majo	r axis column slei	nderness ratio	does not excee	d recomme	nded limit of 200
Slenderness limitations and ef	fective length	- Section E2				
Unbraced length	1	L _{b.y} = 12 ft				
Effective length factor		K _y = 1.00				
Column slenderness		$\lambda_y = K_y \times L_{b,y}$	r _y = 45.570			
	Mino	r axis column slei	nderness ratio	does not excee	d recomme	nded limit of 200
Flexural buckling of members	without slend	er elements - Sec	tion E3			
Elastic critical buckling stress - eo	g E3-4	$F_{e,x} = \pi^2 \times E/$	$(K_x \times L_{b,x} / r_x)^2 =$	429.8 ksi		
Flexural buckling stress - eq E3-2	2	F _{cr.x} = [0.658 ^F	$y^{/F}_{e,x}] \times F_y = 47.0$	6 ksi		
Nominal compressive strength fo						
iddenning o dear o harring a china ann ann an t-airteann ann ann a		$P_{n,fb,x} = F_{cr,x} \times$	A = 1900.2 kips	R.		
Elastic critical buckling stress - ed	q E3-4		$(K_y \times L_{b,y} / r_y)^2 =$			
Flexural buckling stress - eq E3-2		1000 10 00 1000 1000 1000 1000 1000 100	$v^{/F}_{e,y} \times F_{y} = 43$			
Nominal compressive strength fo		8 S				
		$P_{n,fb,y} = F_{cr,y} \times$	A = 1714 kips			
Torsional and torsional-flexura	huckling of	members without	slender eleme	nts - Section E	1	
Unbraced length	. Seeking of	L _{b,z} = 12 ft			-0.	


Simpson Gumpertz & Heger	Project 301 Mission S	treet			Job Ref. 147041.10	0
500 12th St, Suite 270 Oakland, CA 94607	Section Support of Ex	cavation - Strut	cavation - Strut design			
	Calc. by	Date	Chk'd by	Date	3 App'd by Date	
	MAN	11/21/2018	JLC	11/21/2018	SXY	11/21/2018
Effective length factor	942	K _z = 1.00		24;		72)
Flexural-torsional elastic buckling	stress - eq E4-4	$F_e = [\pi^2 \times E \times$	$C_w / (K_z \times L_{b,z})$	$(I_x + I_y)^2 + G \times J] / (I_x + I_y)^2$) = 249.8 ksi	
Flexural-torsional buckling stress	- eq E3-2	$F_{cr} = [0.658^{F}_{y}]$	$[F_{e}] \times F_{y} = 46$	ksi		
Nominal compressive strength fo	r torsional and fle	xural-torsional b	ouckling - eq E	E4-1		
		$P_{n,ftb} = F_{cr} \times A$	= 1834.7 kips	S		
Allowable compressive strengt	h - F1					
Nominal compressive strength		$P_n = min(P_{n,fb})$	v Potry Potto)	= 1714 kips		
Allowable compressive strength		$P_c = P_n / \Omega_c =$				
,		$P_r / P_c = 0.31$				
	PASS	- Norrige - Second		ength exceeds req	uired comp	ressive streng
Design of members for flexure	- Chanter F				•	
Required flexural strength	- Chapter I	M _{r.x} = 342 kip	s ft			
8			0_1			
Yielding - Section F2.1			00	4.71.000.00		
Nominal flexural strength for yield	ling - eq F2-1	$M_{n,yld,x} = M_{p,x}$	= Fy × Zx = 89	1.7 κips_π		
Lateral-torsional buckling - See	ction F2.2					
Unbraced length		$L_{b} = L_{y_{s1}} = 12$				
Limiting unbraced length for yield	· · · · · · · · · · · · · · · · · · ·	$L_p = 1.76 \times r_y$	× √(E / F _y) = *	11.162 ft		
Distance between flange centroid	s	h _o = 12.2 in				
		c = 1				
		r _{ts} = 3.61 in				
Limiting unbraced length for inela	stic LTB - eq F2-		an energialities and		h₀)) + √((J ×	c / (S _x × h₀))² +
		6.76 × (0.7 ×	F _y / E) ²)) = 63	.166 ft		
LTB modification factor		C _b = 1.000				
Nominal flexural strength for later	al-torsional buckl					1996 112 George
		M _{n,ttb,x} = min(0 886 kips ft	C _b × (M _{p,x} - (M	$_{p,x}$ - 0.7 × F _y × S _x) ×	: (L _b - L _p) / (L _r	- L _p)), M _{p,x}) =
Allowable flexural strength - F1	I					
Nominal flexural strength		$M_{n,x} = min(M_n)$	$M_{n,ltb,x}$ =	886 kips_ft		
Allowable flexural strength		$M_{c,x} = M_{n,x} / \Omega$				
		$M_{r,x} / M_{c,x} = 0.$				
		PASS - Allo	wable flexura	al strength exceed	ds required i	flexural streng
Design of members for combin	ed forces - Cha	oter H				
Combined flexure and axial force		Pr/Pc+8/9	× (Mr.x / Mr.x)	= 0.888		
				ure and axial forc	o io within a	acantable line

Simpson Gumpertz & Heger	Project 301 Mission	n Street			Job Ref. 147041.1	0
500 12th St, Suite 270 Oakland, CA 94607	Section	Excavation - Cor	or strut		Sheet no./re	ev.
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	MAN	11/21/2018	JLC	11/21/2018	SXY	11/21/201
STEEL MEMBER DESIGN (AIS In accordance with AISC360 14		blished 2010 us	ing the ASD m	ethod	Tedds ca	lculation version 4
Safety factors						
Shear		Ω _v = 1.67				
Flexure		Ω _b = 1.67				
Tensile yielding		Ω _{t,y} = 1.67				
Tensile rupture		Ω _{t,r} = 2.00				
Compression		Ω _c = 1.67				
Design section 1						
Section details						
Section type		Pipe XS x8	(AISC 14th Edr	n (v14.1))		
ASTM steel designation		A53 Gr.B				
Steel yield stress		F _y = 35 ksi				
Steel tensile stress		F _u = 60 ksi				
Modulus of elasticity		E = 29000 k	si			
Analysis results Required compressive strength	-8.63*	Pr = 50 kips	Radius of gyrat Elastic section Elastic section Plastic section Plastic section Second momer	ion about x-axis, r, 2.8 modulus about y-axis, modulus about x-axis, modulus about x-axis, modulus about y-axis, to f area about y-axis, it of area about y-axis,	9 in S _k , 23.1 in ³ S _k , 23.1 in ³ Z _k , 31 in ³ Z _k , 31 in ³ L _k , 100 in ⁴	
	Theorem					
Section s1 results summary		nit Capacity	Maxii 50		ilization	Result PASS
	kip	os 224.1	50	0.3	223	PASS
Compression resistance						
Restraint spacing		L _v = 11 ft				
		L _x = 11 ft L _y = 11 ft				

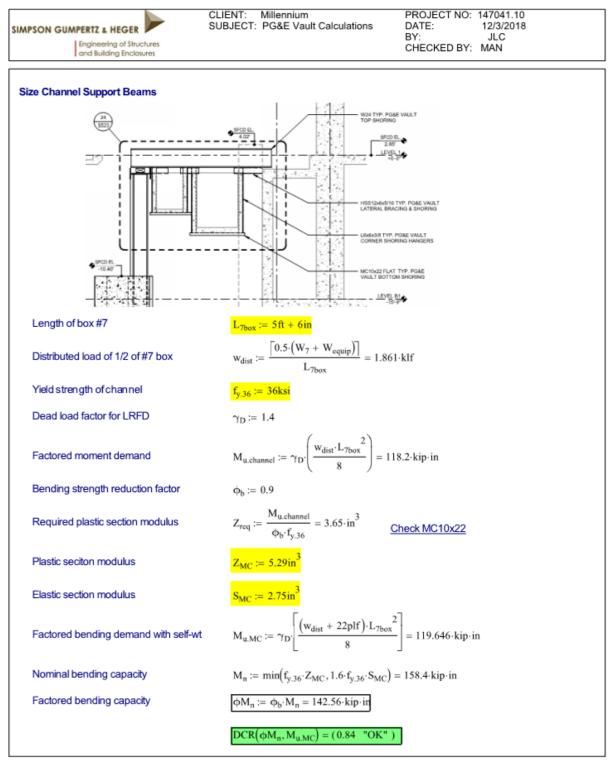
Simpson Gumpertz & Heger	Project 301 Mission	n Street			Job Ref. 147041.10	(
500 12th St, Suite 270 Oakland, CA 94607	Section Support of	Excavation - Corne	er strut		Sheet no./rev. 2	
	Date 11/21/2018	Chk'd by JLC	Date 11/21/2018	App'd by SXY	Date 11/21/2018	
Classification of section in flex	ure - Table B	1 1b (case 20)	838 	24)		20.
Width to thickness ratio		D _o / t = 18.56				
Limiting ratio for compact section		$\lambda_{pff} = 0.07 \times E$				
		States States	All and the second second	Compact		
Limiting ratio for non-compact se	cuon	$\lambda_{\rm rff} = 0.31 \times E$	/ F _y = 256.86	Compact S	ection is co	mpact in flexu
Classification of section in uni	form compres	sion - Table B4.1	a (case 9)			
Width to thickness ratio		D _o / t = 18.56				
Limiting ratio for non-compact se	ction	$\lambda_{rfc} = 0.11 \times E$	/ F _y = 91.14	Nonslend	er	
			,	Section is	nonslender	in compressio
Design of members for compre	ession - Chap	ter E				
Required compressive strength		P _r = 50 kips				
Slenderness limitations and ef	fective length	- Section E2				
Unbraced length		L _{b,x} = 11 ft				
Effective length factor		K _x = 1.00				
Column slenderness		$\lambda_x = K_x \times L_{b,x} / r_x = 45.675$				
	Majo	r axis column sle	nderness ratio	does not excee	d recomme	nded limit of 20
Slenderness limitations and ef	fective length	- Section E2				
Unbraced length	J	L _{b,v} = 11 ft				
Effective length factor		K _v = 1.00				
Column slenderness		$\lambda_y = K_y \times L_{b,y}$	r _v = 45.675			
	Mino	r axis column sle		does not excee	d recomme	nded limit of 20
Flexural buckling of members	without slend	er elements - Sec	tion E3			
Elastic critical buckling stress - e	a E3-4	$F_{e,x} = \pi^2 \times E/$	$(K_x \times L_{b,x} / r_x)^2 =$	= 137.2 ksi		
Flexural buckling stress - eq E3-2	2	F _{cr.x} = [0.658 ^F	$v^{/F_{e,x}} \times F_{v} = 31.$.5 ksi		
Nominal compressive strength fo		ing - eq E3-1	5 01 - 0001 0000			
		$P_{n,fb,x} = F_{cr,x} \times$	A = 374.3 kips			
Elastic critical buckling stress - e	a E3-4	$F_{e,v} = \pi^2 \times E/$	$(K_v \times L_{b,v} / r_v)^2 =$	137.2 ksi		
Flexural buckling stress - eq E3-2	5-1	$F_{cr,y} = [0.658^{F_y/F_{e,y}}] \times F_y = 31.5$ ksi				
Nominal compressive strength fo		A CONTRACTOR OF A CONTRACTOR O	, .,,			
		Notes - Construction of States - Construction - Con	A = 374.3 kips			
Allowable compressive strengt	h - E1					
Nominal compressive strength		$P_n = min(P_n f_n)$	x, P _{n,fb,y}) = 374.3	3 kips		
Allowable compressive strength		$P_c = P_n / \Omega_c =$				
		$P_r / P_c = 0.22$	249 min (1992) (1993) 1999 - Min (1995) (1997)			
	PAS	SS - Nominal com	- pressive stren	gth exceeds req	uired comp	ressive strengt

Simpson Gumpertz & Heger	Project 301 Mission	n Street			Job Ref. 147041.1	0
500 12th St, Suite 270 Oakland, CA 94607	Section Support of	Excavation - Kic	ker brace		Sheet no./re 1	ev.
	Calc. by MAN	Date 11/21/2018	Chk'd by JLC	Date 11/21/201	8 App'd by SXY	Date 11/21/201
STEEL MEMBER DESIGN (AIS	C 360)					141
In accordance with AISC360 14	th Edition pu	blished 2010 u	sing the ASD m	ethod	Tedds ca	lculation version 4
Safety factors						
Shear		Ω _v = 1.67				
Flexure		Ω _b = 1.67				
Tensile yielding		Ω _{t,y} = 1.67				
Tensile rupture		Ω _{t,r} = 2.00				
Compression		Ω _c = 1.67				
Design section 1						
Section details						
Section type		Pipe XS x8	(AISC 14th Ed	n (v14.1))		
ASTM steel designation		A53 Gr.B				
Steel yield stress		F _y = 35 ksi				
Steel tensile stress		F _u = 60 ksi				
Modulus of elasticity		E = 29000	ksi			
Analysis results	-8.63*		Radius of gyra Elastic section Plastic section Plastic section Second mome Second mome	tion about x-axis, r, 2 tion about y-axis, r, 2 modulus about x-axis modulus about y-axis modulus about y-axis modulus about y-axis nt of area about x-axis nt of area about y-axis	89 in s, S _x , 23.1 in ³ s, S _y , 23.1 in ³ s, Z _x , 31 in ³ s, Z _y , 31 in ³ s, L _y , 100 in ⁴	
Required compressive strength		P _r = 172 ki	os			
Section s1 results summary		nit Capacity			Jtilization	Result
Compression resistance	ki	ps 219.6	172	C	0.783	PASS
Destaciat sugging						
Restraint spacing		L _x = 12 ft				
Major avia latoral restraint		$L_x = 12$ ft				
Major axis lateral restraint		- 12 4				
Major axis lateral restraint Minor axis lateral restraint Torsional restraint		L _y = 12 ft L _z = 12 ft				

Simpson Gumpertz & Heger	Project 301 Mission	n Street			Job Ref. 147041.10	
500 12th St, Suite 270 Oakland, CA 94607	Section Support of	Excavation - Kicker	brace		Sheet no./rev. 2	
	Calc. by MAN	Date 11/21/2018	Chk'd by JLC	Date 11/21/2018	App'd by SXY	Date 11/21/2018
Classification of section in flex	ure - Table B	1 1h (case 20)		26		25
Width to thickness ratio		D _o / t = 18.56				
Limiting ratio for compact section		$\lambda_{\text{pff}} = 0.07 \times \text{E}$	/ F. = 58 00			
Limiting ratio for non-compact section		λ _{fff} = 0.31 × E	All and the second second	Compact		
Limiting ratio for non-compact se	cuon	7.m = 0.51 × E	/ Fy = 230.00	Carlos Contractory	ection is co	mpact in flexu
Classification of section in uni	form compres	sion - Table B4.1a	a (case 9)			
Width to thickness ratio		D _o / t = 18.56				
Limiting ratio for non-compact se	ction	$\lambda_{rfc} = 0.11 \times E$	/ F _y = 91.14	Nonslende	er	
				Section is	nonslender	in compressio
Design of members for compre	ession - Chap	ter E				
Required compressive strength		P _r = 172 kips				
Slenderness limitations and ef	fective length	- Section E2				
Unbraced length		L _{b,x} = 12 ft				
Effective length factor		K _x = 1.00				
Column slenderness		$\lambda_x = K_x \times L_{b,x} / r_x = 49.827$				
	Majo	r axis column sler	nderness ratio	does not excee	d recommen	nded limit of 20
Slenderness limitations and ef	fective length	- Section E2				
Unbraced length		L _{b,y} = 12 ft				
Effective length factor		K _y = 1.00				
Column slenderness		$\lambda_y = K_y \times L_{b,y} /$	r _y = 49.827			
	Mino	r axis column sler	nderness ratio	does not excee	d recommer	nded limit of 20
Flexural buckling of members	without slend	er elements - Sect	tion E3			
Elastic critical buckling stress - ee	q E3-4	$F_{e,x} = \pi^2 \times E /$	$(K_x \times L_{b,x} / r_x)^2 =$	115.3 ksi		
Flexural buckling stress - eq E3-2	2	$F_{cr,x} = [0.658^{F}]$	/F _{e,x}] × F _y = 30.	8 ksi		
Nominal compressive strength fo	r flexural buckl	ing - eq E3-1				
		$P_{n,fb,x} = F_{cr,x} \times$	A = 366 8 kins			
			n out on hips			
Elastic critical buckling stress - e	q E3-4		$(K_y \times L_{b,y} / r_y)^2 =$	115.3 ksi		
Elastic critical buckling stress - e Flexural buckling stress - eq E3-2		$F_{e,y} = \pi^2 \times E /$				
	2	$F_{e,y} = \pi^2 \times E / F_{cr,y} = [0.658^F_y]$	$(K_y \times L_{b,y} / r_y)^2 =$			
Flexural buckling stress - eq E3-2	2	$F_{e,y} = \pi^2 \times E /$ $F_{cr,y} = [0.658^F_y$ ing - eq E3-1	$(K_y \times L_{b,y} / r_y)^2 =$			
Flexural buckling stress - eq E3-2 Nominal compressive strength fo	2 r flexural buckl	$F_{e,y} = \pi^2 \times E /$ $F_{cr,y} = [0.658^F_y$ ing - eq E3-1	$(K_y \times L_{b,y} / r_y)^2 =$ $(F_{e,y}] \times F_y = 30.4$			
Flexural buckling stress - eq E3-2	2 r flexural buckl	$\label{eq:Feynergy} \begin{split} F_{e,y} &= \pi^2 \times E \; / \\ F_{cr,y} &= [0.658^F_y] \\ \text{ing - eq E3-1} \\ P_{n,fb,y} &= F_{cr,y} \times . \end{split}$	(K _y × L _{b,y} / r _y) ² = ^{/ F} _{e,y}] × F _y = 30. A = 366.8 kips	8 ksi		
Flexural buckling stress - eq E3-2 Nominal compressive strength fo Allowable compressive strengt	2 r flexural buckl	$\label{eq:Feynergy} \begin{split} F_{e,y} &= \pi^2 \times E \; / \\ F_{cr,y} &= [0.658^F_y] \\ \text{ing - eq E3-1} \\ P_{n,fb,y} &= F_{cr,y} \times . \end{split}$	$(K_y \times L_{b,y} / r_y)^2 =$ $(F_{e,y}] \times F_y = 30.4$ A = 366.8 kips $K_r P_{n,fb,y}) = 366.8$	8 ksi		
Flexural buckling stress - eq E3-2 Nominal compressive strength fo Allowable compressive strength Nominal compressive strength	2 r flexural buckl	$\begin{split} F_{e,y} &= \pi^2 \times E \ / \\ F_{cr,y} &= [0.658^F_y] \\ ing &- eq E3-1 \\ P_{n,fb,y} &= F_{cr,y} \times , \\ P_n &= min(P_{n,fb,i}) \end{split}$	$(K_y \times L_{b,y} / r_y)^2 =$ $(F_{e,y}] \times F_y = 30.4$ A = 366.8 kips $K_r, P_{n,fb,y}) = 366.8$ 219.6 kips	8 ksi		
Flexural buckling stress - eq E3-2 Nominal compressive strength fo Allowable compressive strength Nominal compressive strength	2 r flexural buckl th - E1	$\begin{split} F_{e,y} &= \pi^2 \times E \ / \\ F_{cr,y} &= [0.658^F_y] \\ ing &- eq E3-1 \\ P_{n,fb,y} &= F_{cr,y} \times , \\ P_n &= min(P_{n,fb,z}) \\ P_c &= P_n \ / \ \Omega_c = \end{split}$	$(K_y \times L_{b,y} / r_y)^2 =$ $(F_{e,y}] \times F_y = 30.4$ A = 366.8 kips s, P _{n,fb,y}) = 366.8 219.6 kips	8 ksi 8 kips	uired comp	ressive strengt
Flexural buckling stress - eq E3-2 Nominal compressive strength fo Allowable compressive strength Nominal compressive strength	2 r flexural buckl th - E1	$\begin{split} F_{e,y} &= \pi^2 \times E \ / \\ F_{cr,y} &= [0.658^F_y] \\ ing &- eq \ E3-1 \\ P_{n,fb,y} &= F_{cr,y} \times . \\ P_n &= min(P_{n,fb,z}) \\ P_c &= P_n \ / \ \Omega_c = \\ P_r \ / \ P_c &= 0.783 \end{split}$	$(K_y \times L_{b,y} / r_y)^2 =$ $(F_{e,y}] \times F_y = 30.4$ A = 366.8 kips s, P _{n,fb,y}) = 366.8 219.6 kips	8 ksi 8 kips	uired comp	ressive strengt
Flexural buckling stress - eq E3-2 Nominal compressive strength fo Allowable compressive strength Nominal compressive strength	2 r flexural buckl th - E1	$\begin{split} F_{e,y} &= \pi^2 \times E \ / \\ F_{cr,y} &= [0.658^F_y] \\ ing &- eq \ E3-1 \\ P_{n,fb,y} &= F_{cr,y} \times . \\ P_n &= min(P_{n,fb,i}) \\ P_c &= P_n \ / \ \Omega_c = \\ P_r \ / \ P_c &= 0.783 \end{split}$	$(K_y \times L_{b,y} / r_y)^2 =$ $(F_{e,y}] \times F_y = 30.4$ A = 366.8 kips s, P _{n,fb,y}) = 366.8 219.6 kips	8 ksi 8 kips	uired comp	ressive strengt

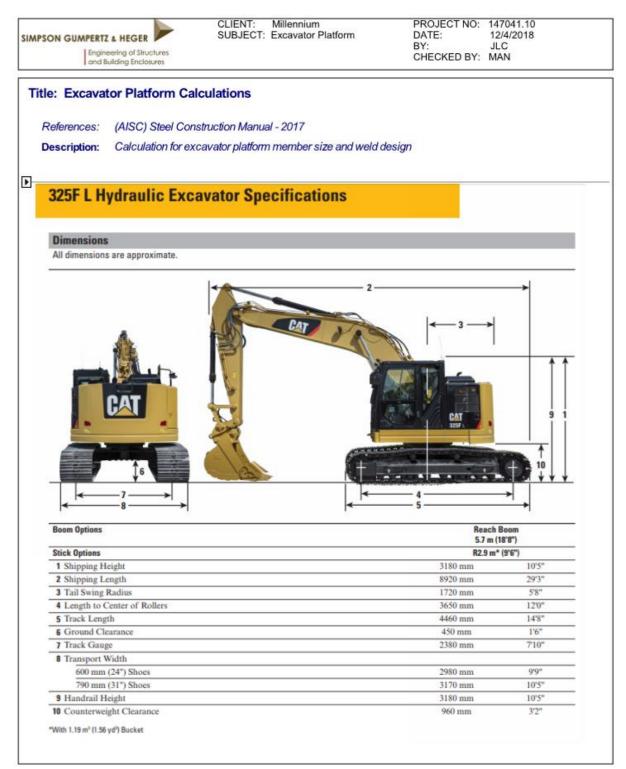
Simpson Gumpertz & Heger	Project 301 Mission	n Street	Job Ref. 147041.10				
500 12th St, Suite 270 Oakland, CA 94607	Section Support of	Excavation - Kicke	r brace		Sheet no./rev. 2		
	Calc. by MAN	Date 11/21/2018	Chk'd by JLC	Date 11/21/2018	App'd by SXY	Date 11/21/2018	
				V*-	Mano P		
Restraint spacing							
Major axis lateral restraint		L _x = 12 ft					
Minor axis lateral restraint		L _y = 12 ft					
Torsional restraint		L _z = 12 ft					
Classification of sections for lo	ocal buckling	- Section B4					
Classification of flanges in flex	ure - Table B	4.1b (case 17)					
Width to thickness ratio		$max(d - 3 \times t)$	$b_{f} - 3 \times t) / t = 2$	24.54			
Limiting ratio for compact section		λ_{pff} = 1.12 \times γ	[E / F _y] = 26.97	7			
Limiting ratio for non-compact se	ction	$\lambda_{rff} = 1.40 \times \sqrt{10}$	[E / F _y] = 33.72	Compact			
Classification of web in flexure	- Table B4.1b	o (case 19)					
Width to thickness ratio		$max(d - 3 \times t)$	$b_{f} - 3 \times t$) / t = :	24.54			
Limiting ratio for compact section		$\lambda_{pwf} = 2.42 \times 10^{-10}$	√[E / F _y] = 58.2	8			
Limiting ratio for non-compact see	ction	$\lambda_{rwf} = 5.70 \times \gamma$	[E / F _y] = 137.2	27 Compact			
				S	ection is co	mpact in flexur	
Classification of flanges in unit	form compres	sion - Table B4.1	a (case 6)				
Width to thickness ratio		$max(d - 3 \times t)$	$b_{f} - 3 \times t) / t = 3$	24.54			
Limiting ratio for non-compact se	ction	$\lambda_{rfc} = 1.40 \times N$	[E / F _y] = 33.72	2 Nonslende	er		
Classification of web in uniform	n compressio	on - Table B4.1a (c	ase 6)				
Width to thickness ratio			$b_{f} - 3 \times t) / t = 3$	24.54			
Limiting ratio for non-compact se	ction	10000 3 4 V C C C C C C C C C C C C C C C C C C	V[E / F _v] = 35.8		er		
				Section is	nonslender	in compressio	
Design of members for shear -	Chapter G						
Required shear strength	A 1988.00 D	V _{r,x} = 98 kips					
Web area		$A_w = 2 \times (d - 1)$	3 × t) × t = 16.5	67 in ²			
Web plate buckling coefficient		k _v = 5					
		(d - 3 × t) / t <	≔ 1.10 × √(k _v ×	E / F _y)			
Web shear coefficient - eq G2-3		C _v = 1.000					
Nominal shear strength - eq G2-1		$V_{n,x} = 0.6 \times F$	$A_{\rm w} \times A_{\rm w} \times C_{\rm v} = 49$	97 kips			
Safety factor		Ω _v = 1.67					
Allowable shear strength		$V_{c,x} = V_{n,x} / \Omega_{c,x}$	= 297.6 kips				
		$V_{r,x} / V_{c,x} = 0.3$	329				
				ar strength exce	eds required	d shear strengt	
Required shear strength		V _{r.y} = 139 kip:					
Web area			3 × t) × t = 11.9	919 in ²			
Web plate buckling coefficient		k _v = 5					
Websheer /// 1. 1. OOO		Section and sections	<= 1.10 × √(k _v ×	< E / Fy)			
Web shear coefficient - eq G2-3		$C_v = 1.000$		77 C Line			
		$V_{n,y} = 0.6 \times F_{y}$	$/ \times A_w \times C_v = 35$	or.o Kips			
Nominal shear strength - eq G2-1		0 - 1 07					
Nominal snear strength - eq G2-1 Safety factor Allowable shear strength		$\Omega_v = 1.67$ $V_{c,v} = V_{n,v} / \Omega_v$	- 044 411				

Simpson Gumpertz & Heger	Project 301 Mission	Street			Job Ref. 147041.10)
500 12th St, Suite 270 Oakland, CA 94607	Section Support of E	xcavation - Kicke	brace		Sheet no./rev 3	1.
	Calc. by MAN	Date 11/21/2018	Chk'd by JLC	Date 11/21/2018	App'd by SXY	Date 11/21/2018
	2	PASS - A	Allowable she	ear strength exce	eds require	d shear streng
Design of members for flexure	- Chapter F					
Required flexural strength		M _{r,x} = 90 kips_	_ft			
Yielding - Section F7.1						
Nominal flexural strength for yield	ding - eq F7-1	$M_{n,yld,x} = M_{p,x} =$	$F_y \times Z_x = 687$	′.5 kips_ft		
Allowable flexural strength - F	1					
Nominal flexural strength		$M_{n,x} = M_{n,yld,x} =$	687.5 kips_ft			
Allowable flexural strength		$M_{c,x} = M_{n,x} / \Omega$	en de la construcción de la constru Construcción de la construcción de l	_ft		
		$M_{r,x} / M_{c,x} = 0.$				
		PASS - Allo	wable flexura	I strength excee	ds required	flexural streng
Design of members for flexure	- Chapter F					
Required flexural strength		M _{r.y} = 176 kips	s_ft			
Yielding - Section F7.1						
Nominal flexural strength for yield	ding - eq F7-1	$M_{n,yld,y} = M_{p,y} =$	$F_y \times Z_y = 562$	2.5 kips_ft		
Allowable flexural strength - F	1					
Nominal flexural strength		M _{n,y} = M _{n,yld,y} =	562.5 kips_ft			
Allowable flexural strength		$M_{c,y} = M_{n,y} / \Omega$	b = 336.8 kips	_ft		
		$M_{r,y} / M_{c,y} = 0.$	523			
		PASS - Allo	wable flexura	I strength excee	ds required	flexural streng
Design of members for combin	ned forces - Cha	apter H				
Combined flexure and axial force	e - eq H1-1b	M _{r,x} / M _{c,x} + M	.y / Mc,y = 0.74	1		
		PASS - Co	ombined flex	ure and axial for	e is within a	acceptable lim

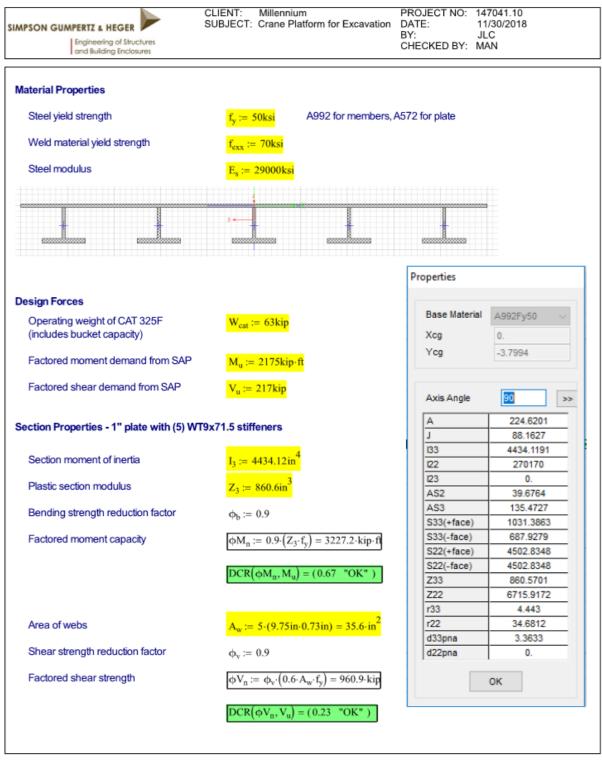

PG&E Vault Calculations

SIMPSON GUMPERTZ & HEGER Engineering of Structures and Building Enclosures	CLIENT: Millennium SUBJECT: PG&E Vault Calculations	PROJECT NO: 147041.10 DATE: 12/3/2018 BY: JLC CHECKED BY: MAN
Title: Precast Vault Calculatio	ns	
References: AISC 360 Description: Check vault ancho	or and channel supports.	
Description: Check valit anche	r anu channer suppons.	
]		
Concrete strength	f _c := 4.5ksi	
Concrete unit weight	$\gamma := 150 \text{pcf}$	
Rebar yield strength	$f_y := 60ksi$	
STD-3660 Utility Vault Parameters (#	5 Box) - Check bottom slab span for crack	king
Slab thickness	$t_{slab} \coloneqq 4in$	
Slab moment of inertia	$I_{slab} := \frac{12in \cdot t_{slab}}{12}^3 = 64 \cdot in^4$	
Wall thickness	$t_{wall} \coloneqq 4.5in$	
Length of slab span	$L_{slab} := (3ft + 9in) - 2 \cdot t_{wall} = 3 ft$	
Estimated weight	W ₅ := 5560lbf	
Cracking moment of slab	$M_{cr} := \frac{\left(7.5 \cdot \sqrt{f_c \cdot psi}\right) \cdot I_{slab}}{0.5 \cdot t_{slab}} = 16.1 \cdot kij$	p-in
Distibuted line load self-weight	$w_{slab}\coloneqq(12in){\cdot}t_{slab}{\cdot}\gamma=50{\cdot}plf$	
Cable weight in box	$\mathbf{W}_{cable} \coloneqq 114\mathbf{lbf}$	
Conservative max moment based on simple span	$M_{u} \coloneqq 1.4 \cdot \left[\frac{\left(w_{slab} \right) \cdot L_{slab}^{2}}{8} + \frac{W_{cable}}{4} \right]$	$\left[\cdot \mathbf{L}_{slab} \right] = 2.381 \cdot \text{kip} \cdot \text{in}$
	$DCR(0.65 \cdot M_{cr}, M_{u}) = (0.228 \text{ "OK})$	<")
	PGE Vault Calculations.xmcd	Simpson Gumpertz & Heg

PGE Vault Calculations.xmcd Page 1 of 3 Simpson Gumpertz & Heger Saved: 12/3/2018 1:37 PM Printed: 12/3/2018 1:37 PM


SIMPSON GUMPERTZ & HEGER	CLIENT: Millennium SUBJECT: PG&E Vault Calculations	PROJECT NO: 147041.10 DATE: 12/3/2018 BY: JLC CHECKED BY: MAN
4686 Incidental Enclosure Vault Para	meters (#7 Box) - Check bottom slab spar	n for cracking
Slab thickness	t _{slab.7} := 7in	
Slab moment of inertia	$I_{slab.7} := \frac{12in \cdot t_{slab.7}}{12}^3 = 343 \cdot in^4$	
Wal thickness	t _{wall.7} := 6in	
Length of slab span	$L_{slab.7} := (5ft + 6in) - 2 \cdot t_{wall.7} = 4$.5 ft
Estimated weight	W ₇ := 19330lbf	
Cracking moment of slab	$M_{cr.7} := \frac{\left(7.5 \cdot \sqrt{f_c \cdot psi}\right) \cdot I_{slab.7}}{0.5 \cdot t_{slab.7}} = 49.3$	l∙kip∙in
Distibuted line load self-weight	$w_{slab.7} \coloneqq (12in) \cdot t_{slab.7} \cdot \gamma = 87.5 \cdot plf$	
Cable weight in box	W _{equip} := 1146lbf	
Conservative max moment based on simple span	$M_{u,7} := 1.4 \cdot \left[\frac{\left(w_{slab.7} \right) \cdot L_{slab.7}^2}{8} + \frac{W_{slab.7}}{8} \right]$	$\left[\frac{V_{\text{equip}} \cdot L_{\text{slab.7}}}{4}\right] = 25.38 \cdot \text{kip} \cdot \text{in}$
	$DCR(0.65 \cdot M_{cr.7}, M_{u.7}) = (0.792$ "	OK")
Post-Installed Anchor - Check capaci	-	
Anchor capacity	$\phi V_n := 4kip$	
Number required for #5 box	$N_5 := \frac{1.4 \cdot W_5}{\Phi V_n} = 1.946$	
Number required for #7 box	$N_7 := \frac{1.4 \cdot W_7}{\varphi V_n} = 6.766$	
	Provide (8) anchors per box for stat	bility prior to channel installation

PGE Vault Calculations.xmcd Page 2 of 3 Simpson Gumpertz & Heger Saved: 12/3/2018 1:37 PM Printed: 12/3/2018 1:37 PM



PGE Vault Calculations.xmcd Page 3 of 3 Simpson Gumpertz & Heger Saved: 12/3/2018 1:37 PM Printed: 12/3/2018 1:37 PM

Excavator Platform Design Calculations

Excvavator Platform Calculations.xmcd Page 1 of 3 Simpson Gumpertz & Heger Saved: 12/4/2018 11:06 AM Printed: 12/4/2018 11:06 AM

Crane Platform Calculations.xmcd Page 2 of 3 Simpson Gumpertz & Heger Saved: 11/30/2018 3:32 PM Printed: 11/30/2018 3:32 PM

SIMPSON GUMPERTZ & HEGER	CLIENT: Millennium PROJECT NO: 147041.10 SUBJECT: Crane Platform for Excavation DATE: 11/30/2018 BY: JLC CHECKED BY: MAN
Design Weld to WT Stiffeners	
Thickness of plate	t _{plate} := 1 in
Width of plate	w _{plate} := 10ft
Area of plate	$A_{plate} := t_{plate} \cdot w_{plate} = 120 \cdot in^2$
Distance from plate centroid to section centroid	y _{bar} := 3.7994in
First moment of area of plate	$Q_{plate} := A_{plate} \cdot y_{bar} = 455.9 \cdot in^3$
Shear flow across plate	$q_{plate} := \frac{V_u \cdot Q_{plate}}{I_3} = 22.3 \cdot \frac{kip}{in}$
Distribute shear flow amongst 5 stiffeners	$q_{weld} := \frac{q_{plate}}{5} = 4.5 \cdot \frac{kip}{in}$
Use 7/16 inch fillet stitch welds	$\phi \mathbf{R}_{n} \coloneqq 9.74 \frac{\mathrm{kip}}{\mathrm{in}}$
Find required weld length per foot	$L_{weld,req} := \frac{q_{weld} \cdot l ft}{\phi R_n} = 5.5 \cdot in$
	Provide 7/16 inch fillet welds at 6 on 12 staggered
Check Transverse Capacity of Plate	
CAT 325F Track Width	L _{track} := 24in
Spacing between stiffeners	$L_{stiff} \coloneqq 27in$
Factored moment transverse on plate	$M_{u.plate} := 1.6 \cdot \left[\left(\frac{0.5 \cdot W_{cat}}{L_{stiff}} \right) \cdot \frac{L_{stiff}^2}{8} \right] = 170.1 \cdot kip \cdot in$
Width of hard-point roller support	$w_{roller} \coloneqq 2ft$
Plastic section modulus of plate	$Z_{\text{trans}} := \frac{w_{\text{roller}} \cdot t_{\text{plate}}^2}{4} = 6 \cdot \text{in}^3$
Factored moment capacity	$\phi M_{n.plate} := \phi_b \cdot (Z_{trans} \cdot f_y) = 270 \cdot kip \cdot ir$
	$DCR(\phi M_{n,plate}, M_{u,plate}) = (0.6 \text{ "OK"})$

Crane Platform Calculations.xmcd Page 3 of 3 Simpson Gumpertz & Heger Saved: 11/30/2018 3:32 PM Printed: 11/30/2018 3:32 PM