

December 15, 2017

Linlin Huang, Ph.D., P.E., S.E. Senior Project Manager Oceanwide Center LLC 88 First Street, 5th Floor San Francisco, CA 94105

Project: FDIC Building at 25 Jessie Street (NYA # 17164.00) Subject: Evaluation for Excavation Induced Ground Movements –*Report*

Dear Linlin,

We have completed our analysis of the Federal Deposit Insurance Corporation (FDIC) Building at 25 Jessie Street in San Francisco. Our analysis focused on impacts to the existing 25 Jessie Street structure based on the estimated ground movements resulting from the construction of the neighboring Oceanwide Center development.

Please refer to the attached report, which summarizes our findings.

Kind Regards,

Michael Gemmill, S.E. Principal

Sudharshan Navalpakkam, S.E. Project Manager

EXECUTIVE SUMMARY

Nabih Youssef Associates (NYA) was engaged to evaluate the structural impacts to the FDIC Building at 25 Jessie Street based on estimated ground movements caused by the shoring, mass excavation and construction of the adjacent Oceanwide Center project. The FDIC Building is an 18-story steel-framed office building originally constructed in 1981. The building is founded on precast concrete piles. The lateral force resisting system consists of a welded steel moment frame utilizing pre-Northridge type moment connections.

NYA's analysis is based on the estimated ground movements provided by Brierley Associates. The 2016 California Existing Building Code (CEBC) and ASCE 41-13 were utilized as a basis for our evaluation and the estimated ground movements were treated as an "alteration" to the building, per the CEBC. Per the CEBC, any alteration that increases the gravity demand to any component by more than 5% and/or increases the seismic demand-to-capacity ratio (DCR) by more than 10% requires those elements to be flagged and evaluated based on the new demands. Any flagged elements which have a DCR greater than 1.0 would then require strengthening. Any flagged elements which have a DCR less than or equal to 1.0 would not require strengthening.

Prior to evaluating the building for the estimated ground movements, NYA performed an evaluation of the FDIC Building, primarily to serve as a baseline to compare the impact of the estimated ground movements. The existing building appears to meet all of the serviceability requirements of the CEBC for dead, live and wind loading. The results of our ASCE 41-13 seismic evaluation indicate that the structure generally meets Life Safety performance under a BSE-1n seismic hazard, except for overstress of a few pile foundations and a majority of the pre-Northridge moment frame connections.

With the incorporation of the estimated ground movements, the building still meets all of the code serviceability requirements for dead, live and wind loading. However, a number of elements exceed the gravity and/or seismic DCR triggers, and were flagged for further evaluation. Upon further evaluation, all of the flagged elements that exceeded the gravity trigger, have DCRs less than 1.0 and do not require retrofitting. The majority of the elements that exceeded the seismic trigger have DCRs less than 1.0, however there are three pre-Northridge moment frame connections (two at Mezzanine and one at Level 3) that exceed the 10% trigger by 1-3% and also have DCRs greater than 1.0. These three connections would require retrofitting, should the estimated ground movements become a reality. Likewise, should the actual ground movements exceed the Brierley estimates, additional connections may require retrofitting. Additionally, any changes to the assumed distribution of ground movement across the site will affect the results. For comparison purposes, the three moment connections would not exceed the 10% seismic trigger at a ground movement of approximately 85% of the Brierley estimates. Correspondingly, the maximum building roof displacement, including these ground movements and service level wind loads (10 year return period) will not exceed the H/400 (i.e., 0.25%) serviceability limit for typical steel framed buildings.

Since the ground movements used in our analysis are estimated, we recommend updating our analysis at discrete intervals during construction. We recommend that the base of each column be surveyed and the elevation reported to NYA prior to excavation and at agreed-upon intervals

NABIHYOUSSEFASSOCIATESSTRUCTURALENGINEERSLOSANGELESSANFRANCISCOIRVINEONE SANSOME STREET, SUITE 3670SANFRANCISCO, CA94104T: 415.397.5213WWW.NYASE.COM

FDIC Building at 25 Jessie Street

Evaluation for Estimated Ground Movements December 15, 2017 Page 3 of 18

during construction. If any of the surveyed differential elevations between any adjacent columns changes by 3/8" or more, we would recommend initiating the updating of the analysis model with the most current ground movement values and reporting back our updated findings. Subsequent to the initial update, we recommend continuing to update the analysis model if differential elevations between any adjacent columns changes by more than 1/8".

Pre-Northridge connections are not considered a hazard to life safety, since gravity support is typically maintained even if the connection is damaged during an earthquake. Therefore, we would not recommend halting construction should any connections exceed the 10% trigger with a DCR greater than 1.0. At the end of construction, any elements that exceed the Code triggers, and exceed a DCR of 1.0, would require strengthening. Though we don't anticipate dead, live or wind loading (serviceability) being an issue based on our preliminary analysis, if, at any point during construction, the serviceability DCR on any element exceeds 1.0, construction should be halted and all parties should convene to determine the next steps, which could include temporary shoring and/or retrofitting depending on the extent of the overage.

TABLE OF CONTENTS

- 1. Introduction and Background
- 2. Building Description
- 3. Building Evaluation Approach and Code Basis
- 4. Brierley Settlement Report Summary and Incorporation in Building Evaluation
- 5. Summary of Findings
- 6. Conclusion and Recommendations

Appendices:

- A. Brierley Report Oceanwide Center, 526 Mission Street, San Francisco, 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 2), dated July 7, 2017, by Brierley Associates.
- B. Structural Calculations by NYA, dated December 15, 2017.
- C. Langan letter, dated December 15, 2017, providing Existing FDIC Building Pile Capacity;

L-Pile analysis detailing existing pile foundation flexural and shear demands due to (a)

excavation induced site movement; and (b) ASCE 41-13 seismic demands

Reference Documents:

The following existing documents were provided by FDIC for review:

- Original structural drawings for Ecker Square (Sheets S1 to S16), by Raj Desai Associates Inc., dated 04/16/1981
- Building Evaluation Report, dated December 10, 2002, by Ratcliff Architects
- Engineering Services Report, dated December 2003, by DASSE Design Inc.
- Draft Building Evaluation Report, dated January 30, 2017, by Perkins + Will and Consultants

1. Introduction and Background:

This report evaluates the impact of ongoing foundation construction and site excavation for the Oceanwide Center project, adjacent to the FDIC Building at 25 Jessie Street.

Oceanwide Center Project:

The Oceanwide Center Project is situated on First Street between Mission Street and Stevenson Street. It is on the same city block as the FDIC Building and will involve the construction of two high-rise buildings adjacent to the subject building. Tower 1 of the new development will be built to the east of the subject building and it will be a 61-story steel-framed building with four basement levels. To the south of the subject building, Tower 2, a 53-story concrete residential building with three basement levels, will be constructed. The construction of the planned basement levels and foundations for proposed towers will require site excavations as deep as 72 and 65 feet below the existing exterior ground surface at Tower 1 and 2, respectively.

FDIC Building:

The FDIC Building is an 18-story office building with a partial basement. Constructed in 1981, the subject building is steel-framed and founded on precast concrete piles. The typical pile tip elevation is 67 feet below grade.

Scope of Report:

Oceanwide Center has contracted with a shoring contractor, Malcolm Drilling, to provide a design-build package for the Oceanwide Center site excavation and shoring. The shoring contractor's engineering consultants, Brierley Associates, have estimated the excavation induced ground movements at the FDIC Building site based on an engineered soil-structure analysis.

In this evaluation report, NYA has used the estimated ground movements from Brierley Associates and geotechnical recommendations provided by Langan, the Oceanwide Center's Geotechnical Engineer of Record, to evaluate the impact of the excavation induced ground movements on the FDIC Building structure.

NYA's structural evaluation is based primarily on the original 1981 structural permit drawings for the FDIC Building (formerly Ecker Square), prepared by Raj Desai Associates Inc. NYA has requested access to the FDIC building to verify information shown on the drawings, but has not been granted access to date. For the purposes of this report, we assume that the original permit drawings accurately represent the as-built condition of the building elements.

2. FDIC Building Description

A. **Building Description**

The FDIC Building is located in San Francisco's Financial District between Mission Street, Market Street, 1st Street and Jessie Street. It is currently utilized as an office building occupied by several departments of the FDIC. It is an 18-story rectangular steel framed structure with an overall footprint measuring approximately 70 feet x 90 feet at the base, and a roof penthouse height of approximately 284 feet above the street level. The building was designed in 1981 and construction was completed in 1984.

Exterior cladding consists of glazing and glass fiber reinforced concrete (GFRC) panels. Interior partitions consist of gypsum board on metals studs. Based on previous reports, it appears the gypsum board typically terminates at the suspended ceiling level. The elevators, stairs, toilets, HVAC duct risers, and utility shafts are all concentrated within a core on the east side of the building.

B. Building History

The building was originally designed as office condominiums. Initially, the FDIC occupied the top four floors of the building. In 1999, the FDIC purchased the last of the condominium units from other owners and began several major interior renovation projects. In 2000, the building received a new roof. In 2001, a major interior renovation of the office floors along with the installation of a new HVAC system was completed. A major waterproofing project in 2001 sealed the windows and exterior GFRC panels.

In 2000-2001, the building was structurally retrofitted to support interior architectural renovations. NYA is not in receipt of drawings detailing the building modifications made at this time, but based on the 2003 DASSE report, it is our understanding that these modifications were relatively minor and localized, and did not alter the main building configuration and structural behavior. To our knowledge, these are the only structural modifications to the original building structure to date.

C. Building Structural System Description

Building Geometry:

Plan layout: The FDIC Building is nearly square (approximately 73 feet by 70 feet at the upper floors) in plan, with a smaller rectangular building core (approximately 17 feet by 44 feet) at the east side of the building. The building has a partial basement measuring approximately 40 feet by 16 feet in plan and houses the fire pump room. The basement occurs on the east side of the building, west of the elevators.

Vertical Layout: The second floor is located 50 feet above the ground level and there are 17 additional floor levels above it. The main roof elevation is about 262.5

Evaluation for Estimated Ground Movements December 15, 2017 Page 7 of 18 t at the top of roof penthouse is at 284

feet above the ground floor. The highest point at the top of roof penthouse is at 284 feet above ground level. The typical story height is 12'-6".

The building is largely open below the second floor, except a partial mezzanine on the east side at the core. The area below this second floor is an outdoor plaza on the ground floor. There is an intermediate level of beams between the second floor and ground floor.

Structural Systems:

Floors: The typical floor consists of 2 ½" thick normal weight concrete over 3" metal decking (total 5 ½" thickness). The decks are supported by steel beams located at a spacing of approximately 8 feet on center. The typical steel beams span up to 24 feet between steel girders and columns. The decks serve as diaphragms to transfer lateral loads to the vertical elements.

Steel Framing: The gravity system consists of steel wide flange beams and columns. Steel moment frames are located around the perimeter of the building on four sides and serve as the primary lateral force resisting system for the building. The moment frames utilize pre-Northridge style welded connections. The corner columns, where perpendicular moment frame lines intersect, are designed as built-up box columns. All perimeter moment frame columns consist of built-up box columns below the 2nd floor.

Steel Moment Frame System Detailing:

"Pre-Northridge" steel moment frame connections with limited ductility: The FDIC building original permit drawings show welded flange moment connections at the perimeter moment resisting frames. As noted in previous Building Evaluation Reports, it is widely acknowledged that this type of connection detailing is prone to damage during significant seismic events. In California, moment-frame buildings with welded flange steel connections were damaged during both the 1989 Loma Prieta earthquake (San Francisco Bay Area) and the 1994 Northridge earthquake (Los Angeles Area). Welded connections in steel moment-resisting frames built before the Northridge earthquake performed poorly because of the brittleness of the asbuilt welds - these older types of connections are commonly referred to as pre-Northridge connections and possess limited rotation capacity and ductility.

Partial Penetration Moment Frame Column Splices:

The FDIC building original permit drawings also show partial penetration welding of the moment frame columns at the column splices and at the WF column to box column splices above the second floor. This type of detailing points to potential localized weakness and brittle welds, i.e., limited rotation capacity and ductility at these column splices.

Foundations: The columns are supported by reinforced concrete pile caps with precast concrete piles. Reinforced concrete grade beams interconnect adjacent pile

caps. The typical pile tip elevation is 67 feet below grade which locates the pile tips on a stratum of dense sand that is underlain by a layer of thick clay.

The majority of the ground floor is a 5" thick reinforced concrete slab on grade. The basement walls are typically 10" thick reinforced concrete and the basement slabs are a 6" to 8" thick reinforced concrete slab on grade.

D. Original Building Design Criteria:

Design Code: San Francisco Building Code, 1975 edition.

Floor Loading Criteria: Live loads of 20 pounds per square foot (psf) at the roof and a total of 100 psf at typical floors (80 psf for occupancy, 20 psf for partitions)

3. Building Evaluation Approach

NYA has performed a structural evaluation of the FDIC Building, per 2016 California Existing Building Code (CEBC) and ASCE 41-13 requirements for existing buildings. This evaluation was performed as a two-step process treating the site excavation induced settlements as a building "alteration" to the existing building, consistent with CEBC Sections 301.1 and 403.

- A. <u>Step 1 Existing Building Evaluation</u>: NYA analyzed the FDIC building in its current configuration, without ground movements, using ASCE 41-13 linear elastic methodologies to evaluate adequacy of the existing buildings elements and determine existing demand-to-capacity ratios (DCRs) for the critical structural elements under gravity and lateral loads. This evaluation served as a baseline for evaluating the effects of ground movements on the FDIC building.
 ASCE41-13 Seismic Hazard & Performance Objective description: Per CEBC Section 403.4 and Table 301.1.4.1, the FDIC Building (Risk Category 1 office building structure) has been evaluated under a BSE-1N earthquake hazard level for a Life Safety performance objective this is referred to as the "Basic Performance Objective for Existing Building" (BPOE) in this report.
- B. <u>Step 2 Existing Building Evaluation Incorporating Estimated Ground Movements</u>: NYA analyzed the FDIC building including the estimated ground movements due to the adjacent site excavation and shoring. Estimated ground movements for this building analysis were obtained from a soil-structure analysis performed by the design-build shoring engineer for the Oceanwide Center project (Refer to Appendix A for Brierley Associates Report). NYA evaluated the existing building structural elements with demands due to ground movement combined with existing dead load, live load and lateral (seismic and wind) loads and determined updated DCRs for the structural elements.
- C. <u>Step 3 CEBC DCR Comparison:</u> NYA evaluated structural elements that were part of the building primary gravity and lateral system consistent with CEBC Sections 403.3 and 403.4:
 - i. CEBC Section 403.3: "Any existing gravity load-carrying structural element for which an alteration causes an increase in design gravity load of more than 5 percent ... shall be shown to have the capacity to resist the applicable design gravity loads."
 - a. Therefore, any gravity element whose demand does not increase by more than 5% will be deemed acceptable as-is by the CEBC and any gravity element whose demand increases by more than 5% will be flagged and evaluated to determine the associated DCR. Any flagged elements with DCRs greater than 1.0 would require retrofitting.
 - ii. CEBC Section 403.4: "Any existing lateral load-carrying structural element whose demand-capacity ratio with the alteration considered is no more than 10 percent greater than its demand-capacity ratio with the alteration ignored shall be permitted to remain unaltered."

FDIC Building at 25 Jessie Street

Evaluation for Estimated Ground Movements December 15, 2017 Page 10 of 18

a. Therefore, any lateral load-carrying element whose DCR does not increase by more than 10% will be deemed acceptable as-is by the CEBC and any lateral load-carrying element whose DCR increases by more than 10% will be flagged and evaluated to determine the associated DCR. Any flagged elements with DCRs greater than 1.0 would require retrofitting.

Description of Building Model & Analysis:

Analysis Model: NYA created a 3-D finite element analysis model of the FDIC building in ETABS (Version 16.2.0) using the existing building permit drawings dated January 21, 1982. The ETABS 3-D model represents the structural configuration of both gravity and lateral systems of the building and accounts for P-delta effects. Grade beams were modeled to accurately capture the rotational fixity at the base of the frame columns.

Material and Element Properties: All structural element sizes and material properties are based on the existing building drawings. Appropriate modifications have been made in accordance with ASCE 41-13 to obtain expected material strengths, where applicable, for structural element evaluation.

Applied Loading: Lateral seismic loads were applied corresponding to the seismic hazard outlined in Section 3.A. Linear dynamic response spectral analysis was performed using the ASCE 41-13 guidelines. Gravity loads were input in the model as slab loads.

Load Combinations for Evaluation: Design load combinations per ASCE 41-13 were used for lateral load checks per CEBC-2016 Section 403.4. Design load combinations per ASCE 7-10 were used for gravity load checks per CEBC-2016 Section 403.3.

4. Brierley Estimated Ground Movements - Incorporation into Building Evaluation

- A. **Vertical ground movements** were applied in the ETABS model as vertical settlement values at the base of each of the columns. The structure was then analyzed to determine the demands on the various structural elements due to this ground movement.
- B. Lateral ground movements at ground surface result primarily in rigid body sliding, i.e, translation of the building. Therefore, this was not input in the ETABS model for analysis as it does not impact the building superstructure. The subsurface lateral ground movements caused by movement of the shoring walls and adjacent soils do impact the building piles, however. The impact of this "sympathetic" pile movement on the pile structure has been captured through an L-Pile analysis performed by Langan on the building piles closest to the proposed shoring walls. The pile flexural and shear demands, due to this lateral ground movement, has been included in the pile element evaluation. Please refer to the letter provided by Langan in Appendix C for further information on their analysis.

5. Summary of Findings

A. FDIC Building Performance Under Service Loads (As-is Condition)

Based on review of Building Evaluation Reports made available to NYA, it is our understanding that the FDIC building has performed well under typical service loading – namely, dead, live and wind loading.

NYA performed a limited review of the main gravity and lateral force resisting system, and concurs that the FDIC building (in its current configuration) appears to be adequate to support service level dead, live and wind loads. Please note that a detailed evaluation of the slabs, beams, girders and other local elements is beyond the scope of this report.

B. <u>FDIC Building Performance Under Service Loads Combined with Excavation-</u> induced Ground Movements (per Section 3.C.i)

Impact of Ground Movement on FDIC Building Serviceability: Based on the building analysis results obtained by imposing the estimated ground movements predicted by the Brierley report, the building structural elements were evaluated per Section 3.C.i. Our main findings are summarized below:

- i. The main elements of the lateral force resisting system the moment frame (MF) beams, columns, connections, and grade beams– typically do not see much load demand under normal service gravity load conditions. However, these elements do participate in resisting the overturning imposed by the differential ground movements, i.e., settlement. Therefore, the load demands (including settlement effects) on these elements increased by more than 5% compared to normal service gravity load demands. A detailed demand-capacity evaluation of these elements was performed and it was confirmed that the maximum load demands were less than the available design strength of these elements (DCRs << 1.0).</p>
- ii. A summary of the maximum DCRs at the various elements, under service loads combined with settlement, is as follows:
 - a. MF beams: 0.27 << 1.0
 - b. MF columns: 0.30 (axial-flexure) << 1.0
 - c. Grade beams: 0.38 (flexure) & 0.26 (shear) << 1.0
 - d. Piles: 0.50 << 1.0
 - e. Interior Gravity columns: Demands increased by 3% only. Adequate, by inspection.

In general, it was determined that the building elements will remain well below the elastic limit under the imposed ground movements. See Appendix B for details.

Evaluation for Estimated Ground Movements December 15, 2017 Page 13 of 18

 iii. The maximum building tilt is 0.11% and the maximum roof displacement is 3.5 inches in the North-South direction due to the excavation-induced ground movements. The average building tilt at the occupied floors above the 2nd floor is 0.11%. These numbers are well under the H/400 (i.e., 0.25%) serviceability limit for typical steel framed buildings (ref. ASCE 7-10 Appendix C Commentary).

Further, combining excavation-induced ground movements with service level wind loading (10 year mean recurrence interval), the total maximum roof displacement is expected to be approximately 8.7 inches in the North-South direction – this is slightly (10%) over the H/400 limit. However, at a ground movement of approximately 85% of the Brierley estimates, the combined average building tilt at the occupied floors above the 2nd floor is 0.25%, which satisfies the H/400 (i.e., 0.25%) serviceability limit.

From a building serviceability perspective, we expect this to have minimal impact to the building occupants and non-structural components.

iv. Therefore, at a ground movement of approximately 85% of the Brierley ground movement estimates, we don't anticipate building serviceability to be an issue. Additionally, any changes to the assumed distribution of ground movement across the site will affect the results.

C. FDIC Building Performance - ASCE41-13 Seismic BPOE Evaluation (Step 1)

Existing building performance: Based on NYA's evaluation per Section 3.A, the FDIC Building in its current configuration will likely experience localized damage during moderate to large seismic events. Some of building elements that do not meet ASCE 41-13 requirements are identified below (See Appendix B for details):

i. Moment Frame Connections: The existing building has pre-Northridge moment frame connections – these connections have been known to be relatively brittle in nature and prone to damage during a seismic event. Therefore, pre-Northridge connections are permitted only limited ductility (i.e., deformation capacity) per ASCE 41-13 guidelines. The structural evaluation of the current building indicates that approximately 90% of the existing MF connections do not meet ASCE 41-13 requirements (i.e., DCR exceeds 1.0, and varies from 1.1 at the 17th floor to 2.8 at the 3rd floor). This means the building will likely see local damage to the moment frame connections during moderate to large seismic events. Based on damage to similar pre-Northridge

FDIC Building at 25 Jessie Street Evaluation for Estimated Ground Movements December 15, 2017 Page 14 of 18

moment frame connections in past earthquakes, we do not expect this to be a significant life safety hazard, as gravity support of the beams are typically maintained, however, post-earthquake repairs can be relatively expensive.

- ii. Moment Frame Column Splices: The existing building MF column splices are detailed with partial penetration welds the effective weld thickness of these welds is only half the thickness of the column flanges. This creates a significantly weaker local section with limited ductility. Where column splices occur near the mid-story height (at the typical 12'-6" story heights between Levels 3 and the Roof), the column splices are deemed adequate by inspection as they occur close to the theoretical bending moment inflection point, and are not evaluated separately. However, the box column splice welds at 29'-6" elevation (above the Mezzanine level) were evaluated specifically for combined axial-flexural-shear action as force controlled elements per ASCE 41-13. The splices were found to be near or slightly exceeding capacity (max. DCR of 1.01).
- iii. Foundation piles: The piles under the corner columns have limited uplift capacity and compression capacity (as provided by Langan See Appendix C for details). The corner moment frame column piles were found to be overstressed in pile capacity and in axial-flexural capacity under uplift demands for the BPOE. It is expected that this will result in localized damage, foundation rocking and increased building drifts.
- The remainder of the lateral force resisting system, including all moment frame beams and columns, appear to be adequate based on NYA's ASCE 41-13 evaluation.

D. <u>FDIC Building Performance Under ASCE41-13 Seismic Evaluation Combined</u> with Excavation-induced Ground Movements (Steps 2 & 3)

As described in Section 3.C.ii, the increase in the DCRs for all lateral force resisting elements were calculated based on the estimated ground movements provided by Brierley Associates. The elements that experience an increase in DCR by 10% or more were flagged for further review. All of the flagged elements were evaluated to determine if their DCR was greater than 1.0. If their DCR was greater than 1.0, these elements would require retrofitting. Here's a brief summary of our findings:

i. **Moment frame connections:** The DCRs for six moment frame connections increase by 10-13%, which is slightly over the threshold of

10% and have been flagged for further review. Of these six connections, three have DCRs less than 1.0 and are therefore acceptable. The remaining three connections (two at the Mezzanine Level and one at Level 3) have DCRs greater than 1.0 and would theoretically require retrofitting, should the full Brierley Associates estimated ground movements come to fruition.

- ii. **Moment Frame Corner Columns:** The DCRs for a few corner columns are between 110-132% of existing DCRs, therefore these elements have been flagged for further review. Upon further review, the column DCRs, including settlement, are typically below 1.0.
- Moment Frame Column Splices: As outlined in Section 5.C.iii, the corner box column splice above the Mezzanine level was checked. DCR increases including estimated ground movements are less than 10%. Therefore, no elements were flagged for further review.
- iv. Moment Frame Beams: DCRs including estimated ground movements for five of the moment frame beams are between 110-113% of existing DCRs, therefore these elements have been flagged for further review. Upon further review, the MF beam DCRs, including estimated ground movements, are typically below 1.0 (maximum of 0.84).
- v. Grade Beams: DCRs including estimated ground movements for three of the moment frame grade beams are between 110-116% of existing DCRs, therefore these elements have been flagged for further review. Upon further review, the grade beam DCRs, including estimated ground movements, are typically below 1.0 (maximum of 0.51).
- vi. **Foundation Piles:** The impact due to excavation induced vertical ground movements (per Section 4.A) on the pile foundations was mainly in the form of increased compression loads at the corner columns this was included as additional compression demand in the pile evaluation. It was found that this additional compression load induced at the corner columns due to settlement helped alleviate the slight seismic tension uplift overstresses observed in the existing building configuration.

The impact due to excavation induced "sympathetic" lateral pile movement (per Section 4.B) was found to be minimal (flexural DCR < 0.35; shear DCR < 0.25) and concentrated at significantly lower elevations (approx.. 20' to 30' below the pile cap) based on Langan's analysis for pile element evaluation - See Appendix C for details. In comparison, the impact due to seismic forces was concentrated near the top of the pile (approx.. 3' to 5' below the bottom of the pile cap, based on Langan's analysis – See Appendix C for details). Therefore, for pile element evaluation, the critical sections for the pile evaluation under seismic action were independent of and not impacted by the

Evaluation for Estimated Ground Movements December 15, 2017 Page 16 of 18

"sympathetic" pile movements due to excavation induced ground movements.

DCRs including estimated ground movements for piles under the four corner MF columns are between 110-121% of existing DCRs, therefore these elements were flagged for further review. Upon further review, the pile DCRs, including estimated ground movements, are less than or equal to 1.06. Typically, structural engineering industry standard is to deem DCRs less than 1.05 as acceptable. We deem this to be acceptable.

E. Non-Structural Components:

The maximum building tilt is 0.11% and the maximum roof displacement is 3.5 inches in the North-South direction due to the excavation-induced ground movements. The average building tilt at the occupied floors above the 2nd floor is 0.11%. These numbers are well under the H/400 (i.e., 0.25%) serviceability limit for typical steel framed buildings (ref. ASCE 7-10 Appendix C Commentary).

Further, combining excavation-induced ground movements with service level wind loading (10 year mean recurrence interval), the total maximum roof displacement is expected to be approximately 8.7 inches in the North-South direction – this is slightly (10%) over the H/400 limit. However, at a ground movement of approximately 85% of the Brierley estimates, the combined average building tilt at the occupied floors above the 2nd floor is 0.25%, which satisfies the H/400 (i.e., 0.25%) serviceability limit.

From a building serviceability perspective, we expect this to have minimal impact to the building occupants and non-structural components such as building cladding, interior partition walls, ceilings, architectural elements, floor finishes, equipment, utilities, piping, etc.

6. Conclusion and Recommendations

NYA has completed our analysis for the impacts of estimated ground movements on the FDIC building at 25 Jessie Street. Our analysis is based on the estimated ground movements provided by Brierley Associates. The 2016 CEBC and ASCE 41-13 were utilized as a basis for our evaluation and the estimated ground movements were treated as an "alteration" to the building, per the CEBC. Per the CEBC, any alteration that increases the gravity demand to any component by more than 5% and/or increases the seismic DCR by more than 10% requires those elements to be flagged and evaluated based on the new demands. Any flagged elements which have a DCR greater than 1.0 would then require strengthening. Any flagged elements which have a DCR less than or equal to 1.0 would not require strengthening.

Prior to evaluating the building for the estimated ground movements, NYA performed an evaluation of the FDIC Building, primarily to serve as a baseline to compare the impact of the estimated ground movements. The existing building appears to meet all of the serviceability requirements of the CEBC for dead, live and wind loading. The results of our ASCE 41-13 seismic evaluation indicate that the structure generally meets Life Safety performance under a BSE-1n seismic hazard, except for overstress of a few pile foundations and a majority of the pre-Northridge moment frame connections.

With the incorporation of the estimated ground movements, the building still meets all of the code serviceability requirements for dead, live and wind loading. However, a number of elements exceed the gravity and/or seismic DCR triggers, and were flagged for further evaluation. Upon further evaluation, all of the flagged elements that exceeded the gravity trigger, have DCRs less than 1.0 and do not require retrofitting. The majority of the elements that exceeded the seismic trigger have DCRs less than 1.0, however there are three pre-Northridge moment frame connections (two at Mezzanine and one at Level 3) that exceed the 10% trigger by 1-3% and also have DCRs greater than 1.0. These three connections would require retrofitting, should the estimated ground movements become a reality. Likewise, should the actual ground movements exceed the Brierley estimates, additional connections may require retrofitting. Additionally, any changes to the assumed distribution of ground movement across the site will affect the results. For comparison purposes, the three moment connections would not exceed the 10% seismic trigger at a ground movement of approximately 85% of the Brierley estimates. Correspondingly, the maximum building roof displacement, including these ground movements and service level wind loads (10 year return period) will not exceed the H/400 (i.e., 0.25%) serviceability limit for typical steel framed buildings.

There are a number of options available for retrofitting pre-Northridge connections and the retrofit would be localized to the connection. The preferred retrofit concept should one be required, should be developed by the building owner's structural engineer.

Since the ground movements used in our analysis are estimated, we recommend updating our analysis at discrete intervals during construction. We recommend that the base of

FDIC Building at 25 Jessie Street

Evaluation for Estimated Ground Movements December 15, 2017 Page 18 of 18

each column be surveyed and the elevation reported to NYA prior to excavation and at agreed-upon intervals during construction. If any of the surveyed differential elevations between any adjacent columns changes by 3/8" or more, we would recommend initiating the updating of the analysis model with the updated ground movement values and reporting back our updated findings. Subsequent to the initial update, we recommend continuing to update the analysis model if differential elevations between any adjacent columns changes by more than 1/8".

Pre-Northridge connections are not considered a hazard to life safety, since gravity support is typically maintained even if the connection is damaged during an earthquake. Therefore, we would not recommend halting construction should any connections exceed the 10% trigger with a DCR greater than 1.0. At the end of construction, any elements that exceed the Code trigger, and exceed a DCR of 1.0, would require strengthening. Though we don't anticipate serviceability being an issue based on our preliminary analysis, if at any point during construction, the serviceability DCR on any element exceeds 1.0, construction should be halted and all parties should convene to determine the next steps, which could include temporary shoring and/or retrofitting depending on the extent of the overage.

FDIC Building at 25 Jessie Street, San Francisco, CA

Appendix A

Report by Brierley Associates– Oceanwide Center, 526 Mission Street, San Francisco, 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 2), dated July 7, 2017

December 15, 2017

Prepared by: Nabih Youssef Associates NYA Project: 17164.01

Prepared for: Oceanwide Center LLP, 88 First Street, 6th Floor, San Francisco, CA 94105 Los Angeles • San Francisco • Irvine One Sansome Street, Suite 3670 • San Francisco, CA 94104 • T: 415.397.5213 • www.nyase.com

MEMORANDUM

DATE: July 7, 2017

TO: Rob Jameson, Malcolm Drilling Company, Inc.

- CC: John Morgan and Adam Hinton, Malcolm Drilling Company, Inc.
- FROM: AJ McGinn, PhD, PE and Eric Lindquist, PhD, PE
- SUBJECT:Oceanwide Center, 526 Mission Street, San Francisco
3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2)

INTRODUCTION

Brierley Associates performed a three-dimensional (3D) numerical analysis to evaluate the behavior of the shored excavation required for the construction of the Oceanwide Center Tower 2 (T2) basement and elevator pit and to evaluate the potential range of short-term, excavation-induced lateral wall and ground deformations. The two proposed excavations are adjacent to the existing pile-supported high-rise building located at 25 Jessie Street. That building is 18 stories tall, with a footprint that is approximately 90 feet in the east-west direction, 75 feet in the north-south direction, with the east face of the building located across Elim Alley (about 13 feet away) from the planned T2 excavation north wall. Isometric and plan views of the model and excavation are provided in Figure 1 along with a typical cross-section.

The T2 excavation will be shored with a perimeter cutter soil mix (CSM) wall restrained by three levels of preloaded internal bracing. The elevator pit will be shored with a perimeter CSM wall restrained by two levels of preloaded internal bracing. The current design of the braced CSM wall was developed based on the soil, groundwater and surcharge pressures recommended by Langan, the project geotechnical engineer.

Brierley's modeling efforts utilize soil properties and behavioral assumptions that are generally consistent with the geotechnical data and the interpretation of that data that was presented by Langan in their geotechnical reports and appurtenant appendices.

This 3D model utilizes interface elements, as opposed to the contact elements that were employed in our previous 2D model for the T2 excavation. The CSM walls, drilled shafts and CSM buttress each have interface elements; and, the drilled shafts are modeled as square shapes, not circular in order to reduce the complexity of the mesh and decrease computational time. The 3D model allowed for the incorporation of the elevator pit excavation. This was not modelled in the 2D analysis, as that model replicates plane-strain conditions.

In addition to the above, the piles that support 25 Jessie have been modelled as pile elements with interface elements along their full depth. The load for each pile is applied to the top of the pile and it is distributed with depth based on the strength characteristics of the surrounding soil. Based on parametric studies of the 25 Jessie foundation load application we have performed it

appears that the piles are distributing the surcharge load to the soil layers in a reasonable manner. Note that ground deformations are reset to zero in the model after the 25 Jessie piles load is applied but before the next steps in the model are processed. Note that we are running a couple of additional analyses to confirm the modeling software is resetting the ground deformations in the manner we expect

It should be noted that changes to the assumed sequence of construction and phasing of the two excavations will affect the results of the analysis.

NUMERICAL MODELING FOR BASE HEAVE EVALUATION

Software

The analyses that are summarized in this memorandum were performed using Midas GTS NX, a comprehensive finite element analysis software package that is equipped to handle the entire range of geotechnical applications including deep foundations, excavation, complex tunnel systems, seepage analysis, consolidation analysis, embankment design, dynamic and slope stability analysis.

Although GTS NX is capable of conducting fully-coupled analyses, this modeling effort utilizes a sequential stress – seepage analysis type and a Mohr-Coulomb soil strength criterion. Therefore, it does not capture soil consolidation and strength or deformation property changes over time. The Mohr-Coulomb soil model exhibits linearly elastic behavior until the soil shear strength is exceeded, and then perfectly-plastic deformation at a constant shear stress for failed elements. Therefore, this analysis is considered to provide only a rough approximation of deformation behavior that attempts to simulate steady-state conditions at each major construction stage.

Assumed Soil Profile

An isometric view and representative cross-section that has been analyzed for this study are illustrated in Figure 1. Working from ground surface down the layers that have been modeled are Fill, Dune Sand, Marine Deposits, Colma Sand, Old Bay Clay Crust, Old Bay Clay and Alluvium Colluvium. Layer geometries are based on the boring information and typical soil profiles provided in Langan geotechnical investigation report and appurtenant appendices for this project. The profile that has been analyzed in this study utilizes horizontal layer contacts to reduce computational time.

Excavation and Bracing Geometry and Sequence

Existing grade is assumed at elevation +7 ft. The general subgrade elevation within the excavation at T2 is assumed to be elevation -58 ft. Internal bracing will be installed at elevations -3 ft -24.5 ft and -41 ft. The additional shored excavation for the elevator pit located near the center of the T2 footprint is assumed to be elevation -72 ft. The elevator pit is assumed to have two levels of internal bracing at elevations -60.5 ft and -65.5 ft. Prior to the installation of each bracing level, the excavation will be advanced to 3 feet below the specified bracing elevation. The groundwater level inside the excavation will be drawn down progressively.

Per the submitted T2 CSM Wall design calculations, the groundwater level inside the excavation is specified to be lowered to 5 feet below bottom of excavation at all intermediate excavation stages and a minimum of 3 feet below general subgrade during the final stage of mass excavation.

Assumed Soil Properties

Unit	Unit Weight (pcf)	Ko	c (psf)	φ' (deg)	E (ksf)	ν
Fill	120	0.47	0	32	278	0.20
Dune Sand	125	0.60	0	36	605	0.35
Marine Deposits	100	0.60	0.60σ'z	0	563	0.49
Colma Sand	133	0.60	150	36	2089	0.35
Old Bay Clay Crust	116	0.70	3500	0	1066	0.49
OBC (Case D)	112	0.70	0.31σ'z	0	1336	0.49
Alluvium/Colluvium	125	0.50	0	32	2768	0.45
Bedrock	NA	NA	NA	NA	NA	NA

Table 1: Soil Properties

The Marine Deposits and Old Bay Clay were assumed to behave as undrained materials beginning with stress changes that are applicable to the first dewatering stage. The Old Bay Crust was assumed to be six feet thick and behave as an undrained material inside and outside of the excavations. The crust is modelled with an undrained strength of 3,500 psf based on Stress History and Normalized Soil Engineering Properties (SHANSEP) correlations with over-consolidation ratios. However, additional geotechnical testing data received on 6/4/17 report undrained strengths between 1,500 and 4,000 psf in the depth range from 75 to 90 FT below grade. As such the 3,500 psf used in this analysis may be non-conservative.

A Poisson's ratio of 0.49 was applied to the materials that are assumed to behave in an undrained manner. Therefore, this analysis is considered to provide only a rough approximation of deformation behavior prior to the dissipation of excess positive, or negative, soil pore pressures over time.

It should be noted that for the 3D analysis we added some effective cohesion (150 psf) to the Colma Sand to prevent passive failure within the ground at the elevator pit during pre-loading of the upper level. The effective friction angle was lowered from 38 degrees to 36 degrees to approximate the failure envelope for the 38 degree value.

Properties of CSM Wall, Internal Bracing, Drilled Shafts and Soil-Cement Buttresses

The CSM walls have been modeled using 3-foot thick elastic elements. For each case, the depth of CSM wall is 116 ft. Note that the wall depth in the current CSM plan is 115 ft. The flexural wall stiffness utilized in the model is based on the section properties of 30-in deep wide flange soldier piles alone without any contribution from the soil-cement. We understand that Malcolm plans to use W33 sections at the T2 excavation, which are stiffer than a W30 section, but this difference does not warrant reanalysis at this time. The flexural and lateral bracing stiffness values are provided in Table 2.

6.5-foot diameter drilled shafts to rock are included within the modeled cross-section. An equivalent square cross-section was used in lieu of circular shapes as discussed previously. We have used solid state elements with interface elements to model these structural elements, see Figure 1 for approximate locations, with an area of 33 ft² and a cracked moment of inertia of 44 ft⁴, which is half the calculated value. We assumed a Young's modulus value of 1,450 ksi, which is consistent with earlier studies. The drilled shafts were assumed to have a fixed support at the bedrock surface. Interface elements have been employed to model the soil-structure interaction between the drilled shafts and the soil below subgrade.

\\/oll	Top Elevation	Bottom Total Depth		Top 35'	>94'				
vvali	TOP Elevation	Elevation	(feet)	EI (k-in ² /ft)	EI (k-in ² /ft)	EI (k-in ² /ft)			
25 Jessie	+7	-109	116	66,700,000 94,975,000 66		66,700,000			
Other perimeter	+7	-82	89	66,700,000	94,975,000	NA			
Elevator Pit (E-W)	-53.5 (top of pile) -58 (shored grade)	-82	28.5	5,267,450 (W14x90 throughout whole depth)					
Elevator Pit (N-S)	-55 (top of pile) -58 (shored grade)	-87	32	7,276,360 (W14x120 throughout who		ole depth)			

Table 2: T2-25 Jessie CSM Wall Properties

Unreinforced 3-foot thick CSM buttresses extend 24 feet perpendicular to the CSM shoring wall from ground surface to a depth of 116 feet below ground surface were employed in the model. However, nominal reinforcement, W14s at 12 ft centers along the panel length will be installed in the field. The soil-cement has been modeled with elastic properties correlated to an average unconfined compressive strength of 150-200 psi. Assumed deformation parameters are presented in Table 3. Elastic interface elements have been employed to model the soil-structure interaction between the soil-cement and in situ ground conditions.

Table 3 – Soil-Cement Properties

E (psi)	ν
40,000	0.2

Interfaces

Interface elements were used for the 3D model with k_n (normal stiffness) and k_t (tangential stiffness) determined automatically for the interface elements by the "Interface Wizard", which is a feature of the Midas software. This program function automatically assigns interface parameters at the T2 wall interfaces. Those assigned parameters are listed in Table 4.

Interface	E _{OED} (psi)	G(psi)	k _n	k _t	k _t /G
Fill to CSM Wall	2144	804	1800	165	0.205
Dune Sand to CSM Wall	6742	1556	3500	315	0.202
Marine Deposits to CSM Wall	7323	1417	3170	290	0.205
Colma Sand to CSM Wall	19528	5580	12500	1300	0.233
Old Bay Clay Crust to CSM Wall	9966	2847	5500	490	0.172
Old Bay Clay to CSM Wall	9966	2847	5500	490	0.172
Buttresses to CSM Walls	53846	15385	80000	4000	0.269
Shafts to Colma Sand	19528	5580	12500	1300	0.233
Shafts to Old Bay Clay Crust	9966	2847	5500	490	0.172
Shafts to Old Bay Clay	9966	2847	5500	490	0. 172
Shafts to Alluvium/Colluvium	25873	7392	15000	1500	0.203

Table 4 – Elastic Interface Element Prop
--

Internal Bracing

The internal bracing has been modeled using solid state structural elements that have the same structural properties as those shown on the temporary support of excavation design documents prepared by Brierley, which is a departure from the 1-D truss elements at 3-foot spacing that were used in the 2D models. For this study, each main excavation strut is pre-loaded to 50% of its maximum ASD compression demand. The ASD compression demand for each strut can be found in Brierley's bracing design calculations for the T1 and T2 bracing. The struts at the elevator pit excavations are specified to be preloaded to 100% of their ASD design load; however, these values need to be reduced slightly for modeling purposes to avoid local passive failures behind the elevator pit shoring walls.

In the analysis, each bracing level is installed and preloaded prior to the next stage of excavation.

We understand that the project team agreed to reduce main basement excavation bracing level one pre-load values to 35 to 40% of the design load and that the other levels will be pre-loaded to 75% of the design value. Those updated preloads have not been incorporated into this analysis.

SUMMARY OF RESULTS

Previous Analysis

Tables 5 and 6 present a summary of the numerical analyses performed to date for the T2 excavation by Brierley (baseline) memorandum dated December 6th, 2016 and February 3rd, 2017.

The values present in Table 5 for our three baseline analyses do not include interface elements and were taken at ground surface. Because interface elements were not used in our initial 2D models (Table 5), heave associated with the excavation masks the settlement behind the wall, especially in close proximity to the wall.

				Undrained FS		FS Basal		Building	
			Strength Shear Streng		on OBC	Heave	∆h	∆vs	∆vn
Date	Case	Notes	Correlation	(psf)	Strength	(in.)	(in.)	(in.)	(in.)
12/6/2016	Baseline	No reinforcemnt	0.31*s'v	2300	1.3	15.2	2.0	1.3	0.5
12/6/2016	Baseline	Drilled shafts	0.31*s'v	2300	1.3	16.1	1.5	1.0	0.5
12/6/2016	Baseline	Buttresses	0.31*s'v	2300	1.3	8.3	1.4	1.0	-0.2

Table 5: Comparison of Numerical Results to Date

The reader is referred to our memorandum dated February 3rd for a discussion on the results for Cases A through D presented in Table 6. The 3D model is based on Case D, lower tangential stiffness input parameters.

2/3/2017		Wall Displacement					Ground Surface		Near Pile Tip		
	Tangential	Тор	B1	B2	B3	Max	Heave	∆v 13 ft	∆v 88 ft	∆v 13 ft	∆v 88 ft
Case	Stiffness	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
Α	Lower	0.7	1.1	1.7	2.0	2.2	9.7	1.9	1.2	1.0	0.6
Α	Upper	0.4	0.8	1.5	1.8	2.0	9.2	1.4	1.1	0.6	0.5
В	Lower	1.1	1.4	1.8	2.2	2.6	7.5	2.1	1.4	1.4	0.8
В	Upper	0.5	0.8	1.4	1.6	1.9	6.6	1.1	1.2	0.5	0.7
С	Lower	1.0	1.3	1.8	2.0	2.4	9.1	2.1	1.3	1.4	0.7
С	Upper	0.4	0.8	1.3	1.6	1.8	4.0	1.2	1.1	0.8	0.8
D	Lower	1.0	1.0	2.0	2.5	2.6	9.7	2.3	1.5	1.6	0.8
D	Upper	0.4	0.8	1.4	1.7	1.9	7.9	1.4	1.2	0.8	0.7

Table 6: Tower 2 2D Analysis Deformations

Current Analysis

The surface plan, profile and isometric view of the model are presented in Figure 1. Due to the large lateral extent of the model and the fact that both the T2 and pit excavations were modeled, a simplified soil profile with horizontal contacts was used and slight elevation adjustments were made to accommodate the model grid.

Figure 2 presents contours of total deformation at ground surface. The deep-seated nature of ground deformation can be seen in the pattern of deformation around the perimeter of the excavation with total deformation ranging from 1.0 to 1.3 in. at distance from the excavation. The influence of the piles that support 25 Jessie and the CSM walls around T1 can be seen in the lesser values of predicted total deformation in those areas than elsewhere around the perimeter of the perimeter of the T2 excavation.

Contours of total deformation at the top of the Colma Sand are presented in Figure 3. In this figure, the deep-seated nature of ground deformation is evident around the perimeter of the excavation. Deformations associated with the vertical loads transmitted by the piles to the Colma Sand are noticeable below the limits of 25 Jessie.

Contours of total CSM perimeter wall deformation are presented in Figure 4 for the final excavation stage at T2 25 Jessie. At the north wall, the wall adjacent to 25 Jessie, the maximum total deformation, which is mostly in the lateral direction, is on the order of 1.2 in. and ranges from 0.7 to 0.8 in. with depth. The range of deformations above the bottom of excavation is similar, 0.9 to 1.0 in., at the south wall. The largest total deformation, 1.7 in. occurs along the west wall. At the east wall, the total deformation ranges from 0.6 to 1.0 in.

Figure 5 presents contours of lateral deformation at ground surface in the north-south direction. Ground deformations to the north beneath 25 Jessie are on the order of 0.5 in. and they are approximately 0.3 in. to the south of the excavation.

Figure 6 presents contours of lateral deformation at top of the Colma Sand in the north-south direction. Ground deformations to the north beneath 25 Jessie are on the order of 0.4 to 0.7 in. with a maximum value of 0.8 in. directly behind the wall. They are approximately 0.3 to 0.6 in. to the south of the excavation with a maximum value of 0.7 in. directly behind the wall.

Contours of lateral CSM perimeter wall deformation in the north-south direction are presented in Figure 7. The maximum lateral deformation is on the order of 1.1 to 1.2 in. at both walls near the same elevation. Lateral deformations below the bottom of the excavation range from 0.6 to 0.8 in.

Figure 8 presents contours of lateral deformation at ground surface in the east-west direction. Ground deformations to the west are on the order of 0.1 to 0.5 in. and they are approximately 0.1 to 0.6 in. the east of the excavation.

Figure 9 presents contours of lateral deformation at top of the Colma Sand in the east-west direction. Ground deformations to the west are on the order of 0.4 to 0.7 in. with a maximum value of 1.2 in. directly behind the wall. They are approximately 0.4 to 0.8 in. to the east of the excavation with a maximum value of 0.9 in. directly behind the wall.

Contours of lateral CSM perimeter wall deformation in the east-west direction are presented in Figure 10. The maximum lateral deformation is on the order of 1.7 in the west wall and 1.0 in. at east wall. Lateral deformations below the bottom of the excavation range from 0.6 to 0.8 in.

Figure 11 presents contours vertical deformation at ground surface. Ground deformations range from 0.6 to 1.3-in. around the perimeter of the excavation. They are predicted to be less under the 25 Jessie structure, on the order of 0.3 to 0.8 in., due to the presence of the piles.

Contours of vertical deformation at the top of the Colma Sand are shown in Figure 12. Around the perimeter of the excavation the vertical deformation ranges from 0.6 to 0.8 in. Under 25 Jessie the deformation ranges from 0.2 to 0.6 in., with the larger deformations occurring along the northern edge of the building.

Contours of major principal stress in the drilled shafts are shown in Figure 13. The maximum tensile stress predicted in the drilled shafts ranges from 235 to 278 psi and is primarily located on the edge of the shaft that faces away from the perimeter CSM walls.

Contours of minor principal stress in the drilled shafts are shown in Figure 14. The maximum compressive stress predicted in the drilled shafts ranges from 107 to 124 psi.

Figures 15 and 16 present contours of major principal stress and minor principal stress, respectively. The maximum tensile stress is 27 to 37 psi near the top of the CSM buttresses at the edge farthest from the CSM wall. The maximum compressive stress is 196 psi located at the top of the buttresses where they contact the CSM perimeter wall adjacent to 25 Jessie.

Figure 17 presents an isometric view of the elevator pit excavation and shows the lateral support system within the excavation. There are two levels of support in the excavation.

Contours of total deformation for the elevator pit CSM walls are provided in Figure 18. Total deformations in the wall range from 0.8 to 0.85-in.

Contours of lateral displacement for the elevator pit CSM in north-south direction are presented in Figure 19. Maximum lateral deformation in the north-south direction on the north and south walls are on the order of 0.4 to 0.5 and 0.2 to 0.3 in., respectively, while negligible deformation is predicted in the east and west walls.

Contours of lateral displacement for the elevator pit CSM in east-west direction are presented in Figure 20. Maximum lateral deformation in the east-west direction on the east and west walls are on the order of 0.1 to 0.3 and 0.4 to 0.5 in., respectively, while negligible deformation is predicted in the north and south walls.

Time Dependent Soil Behavior

The current modeling utilizes undrained strength parameters for the fine-grained soils (Marine Deposits, Old Bay Clay Crust and Old Bay Clay). As a result, the modeling does not capture the dissipation of pore water pressure and the transition from undrained to drained strength and stiffness over time. As a result, the behavior that is reported herein is different from long-term behavior during and after building construction. This analysis would require a fully-coupled soil-groundwater model that captures the time dependence of the soil properties and changes in stress state. While the models addressed herein may not evaluate stability or geometric deformation in absolute terms, certain behavioral trends can be surmised and the models are considered useful for that purpose.

Concluding Remarks

The purpose of the finite element analysis presented herein was to provide the team with insight about the behavior of the CSM walls, drilled shafts, CSM buttresses and ground inside and outside the excavations for T2 and the elevator pit therein. These should not be taken as absolute values as strength and deformation parameters of the soil might be different than assumed herein. Moreover, the boundary conditions for the 3D model are different from the 2D models performed to date, which replicate plane-strain conditions. Due to the limited dimensions of the elevator pit, it was not modelled in the 2D parametric studies performed to date.

Previous studies have applied pre-load values for Level B1 in the main excavation based on 50% of the loads derived for the full excavation depth. This level of pre-loading in B1 appears to result in outward wall displacement and ground heave effects around the excavation. In reality, it is unlikely that these pre-loads could be generated, or if applied could result in heave impacts to adjacent structures and facilities. As such, models run with those values should be considered as non-conservative with respect to near field and surficial estimated deformation. We understand that the project team has agreed to reduce the main basement excavation bracing level one pre-load values to 35 to 40% of the design load and that other levels will be pre-loaded to 75% of the design value. Those updated preloads have not been incorporated in this analysis, which has applied a preload value of 50% of design load.

It should be noted that we had to add some effective cohesion (150 psf) to the Colma Sand to prevent passive failure within the ground at the elevator pit during pre-loading of the upper level bracing. The effective friction angle was lowered from 38 degrees to 36 degrees to approximate the failure envelope for the 38 degree value.

The predicted deformations levels below the footprint of the 25 Jessie structure are ground deformations, not structural deformation. Estimate deformation of the 25 Jessie structure and the underlying foundation system is outside the scope of this work.

We note that the predicted deformations in this model, particularly near-field effects, are sensitive to interface properties. As such, large scale, deep-seated deformations can be estimated with more confidence compared to deformations immediately adjacent to walls or structural elements.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 10 of 31

Figure 1a: Isometric View of Stage 1 Excavation

Figure 1b: Key Plan

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 11 of 31

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 12 of 31

Figure 1d: Tower 2 SOE Cross-Section

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 13 of 31

Figure 2: Contours of Total Deformation at Ground Surface, Final Excavation Stage I.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 14 of 31

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 15 of 31

Figure 4: Contours of Total CSM Perimeter Wall Deformation, Final Excavation Stage I.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 16 of 31

Figure 5: Contours of Lateral Deformation (N-S) at Ground Surface, Final Excavation Stage I.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 17 of 31

Figure 6: Contours of Lateral Deformation (N-S) at Top of Colma Sand, Final Excavation Stage I.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 18 of 31

Figure 7: Contours of Lateral CSM Perimeter Wall Deformation, Final Excavation Stage I.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 19 of 31

Figure 8: Contours of Lateral Deformation (E-W) at Ground Surface, Final Excavation Stage I.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 20 of 31

Figure 9: Contours of Lateral Deformation (E-W) at Top of Colma Sand, Final Excavation Stage I.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 21 of 31

Figure 10: Contours of Lateral CSM Perimeter Wall Deformation (E-W), Final Excavation Stage I.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 22 of 31

Figure 11: Contours of Vertical Deformation at Ground Surface, Final Excavation Stage I.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 23 of 31

Figure 12: Contours of Vertical Deformation at Top of Colma Sand, Final Excavation Stage I.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 24 of 31

Figure 13: Contours of Major Principal Stresses (Tension) in Drilled Shafts, Final Excavation Stage I.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 25 of 31

Figure 14: Contours of Minor Principal Stresses in Drilled Shafts, Final Excavation Stage I.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 26 of 31

Figure 15: Contours of Major Principal Stress (Tension) in CSM Buttresses, Final Excavation Stage I.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 27 of 31

Figure 16: Contours of Minor Principal Stress in CSM Buttresses, Final Excavation Stage I.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 28 of 31

Figure 17: Isometric View of Elevator Pit Excavation.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 29 of 31

ŋ

Figure 18: Contours of Total CSM Pit Wall Deformation, Final Stage I.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 30 of 31

Figure 19: Contours of CSM Pit Wall Deformation (N-S), Final Stage I.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 2) July 7, 2017 Page 31 of 31

Figure 20: Contours of CSM Pit Wall Deformation (E-W), Final Stage I.

MEMORANDUM

DATE: July 7, 2017

TO: Rob Jameson, Malcolm Drilling Company, Inc.

CC: John Morgan and Adam Hinton, Malcolm Drilling Company, Inc.

FROM: AJ McGinn, PhD, PE, Eric Lindquist, PhD, PE and Mohamed Gamal, PhD, PE

SUBJECT: Oceanwide Center, 526 Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1)

INTRODUCTION

Brierley Associates performed a three-dimensional (3D) numerical analysis to evaluate the behavior of the ground deformations induced by excavations for Tower 2 (T2) and the southern segment of Tower 1 (T1). These shored excavations are required for the construction of the Oceanwide Center and its appurtenant basements and elevator pits. The 3D analysis predicts ranges of short-term, excavation-induced ground deformation and lateral wall movements. It allows the reader to develop independent evaluations of the potential impacts of ground and lateral wall deformations on abutting third parties, such as the structure at 25 Jessie. The two proposed excavations are adjacent to the existing pile-supported high-rise building located at 25 Jessie Street. That building is 18 stories tall, with a footprint that is approximately 90 feet in the east-west direction, 75 feet in the north-south direction, with the east face of the building directly behind the west wall of the T1 and the south face of the building is approximately 13 ft behind the north wall of the T2 excavation. Isometric and plan views of the model and excavation are provided in Figure 1 along with a typical cross-section.

The results of the analysis presented herein are for after both the T2 and T1 excavations have been completed. It is our understanding that the T2 excavation will take place first. After that T1 will be excavated and the soil cement within common wall that separates the two excavations will be removed as the adjacent T1 excavation is advanced.

Both the T1 and T2 excavations will be shored with a perimeter cutter soil mix (CSM). The T1 excavation will be restrained by four levels of preloaded internal bracing. The elevator pit will be shored with a perimeter CSM wall restrained by three levels of preloaded internal bracing. The current design of the braced CSM wall was developed based on the soil, groundwater and surcharge pressures recommended by Langan, the project geotechnical engineer.

Brierley's modeling efforts utilize soil properties and behavioral assumptions that are generally consistent with the geotechnical data and the interpretation of that data that was presented by Langan in their geotechnical reports and appurtenant appendices.

This 3D model utilizes interface elements, as opposed to the contact elements that were employed in our previous 2D model for the T1 excavation. The CSM walls, drilled shafts and CSM buttress each have interface elements; and, the drilled shafts are modeled as square

shapes, not circular in order to reduce the complexity of the mesh and decrease computational time. The 3D model allowed for the incorporation of the elevator pit excavation. This was not modelled in the 2D analysis, as that model replicates plane-strain conditions.

In addition to the above, the piles that support 25 Jessie have been modelled as pile elements with interface elements along their full depth. The load for each pile is applied to the top of the pile and it is distributed with depth based on the strength characteristics of the surrounding soil. Based on parametric studies of the 25 Jessie foundation load application we have performed it appears that the piles are distributing the surcharge load to the soil layers in a reasonable manner. Note that ground deformations are reset to zero in the model after the 25 Jessie piles load is applied but before the next steps in the model are processed. Note that we are running a couple of additional analyses to confirm the modeling software is resetting the ground deformations in the manner we expect

It should be noted that changes to the assumed sequence of construction and phasing of the two excavations will affect the results of the analysis.

NUMERICAL MODELING FOR BASE HEAVE EVALUATION

Software

The analyses that are summarized in this memorandum were performed using Midas GTS NX, a comprehensive finite element analysis software package that is equipped to handle the entire range of geotechnical applications including deep foundations, excavation, complex tunnel systems, seepage analysis, consolidation analysis, embankment design, dynamic and slope stability analysis.

Although GTS NX is capable of conducting fully-coupled analyses, this modeling effort utilizes a sequential stress – seepage analysis type and a Mohr-Coulomb soil strength criterion. Therefore, it does not capture soil consolidation and strength or deformation property changes over time. The Mohr-Coulomb soil model exhibits linearly elastic behavior until the soil shear strength is exceeded, and then perfectly-plastic deformation at a constant shear stress for failed elements. Therefore, this analysis is considered to provide only a rough approximation of deformation behavior that attempts to simulate steady-state conditions at each major construction stage.

Assumed Soil Profile

An isometric view and representative cross-section that has been analyzed for this study are illustrated in Figure 1. Working from ground surface down the layers that have been modeled are Fill, Dune Sand, Marine Deposits, Colma Sand, Old Bay Clay Crust, Old Bay Clay and Alluvium Colluvium. Layer geometries are based on the boring information and typical soil profiles provided in Langan geotechnical investigation report and appurtenant appendices for this project. The profile that has been analyzed in this study utilizes horizontal layer contacts to reduce computational time.

Excavation and Bracing Geometry and Sequence

Existing grade is assumed at elevation +7 ft. The general subgrade elevation within the excavation at T1 is assumed to be elevation -67.5 ft. Internal bracing will be installed at elevations -3 ft, -24.5 ft, -41 ft and -54 ft. The additional shored excavation for the elevator pit located near the center of the T1 footprint is assumed to begin at elevation -67.5 ft. The elevator pit is assumed to have three levels of internal bracing at elevations -65 ft, -72 and -79 ft. Prior to the installation of each bracing level, the excavation will be advanced to 3 feet below the specified bracing elevation. The groundwater level inside the excavation will be drawn down progressively.

Per the submitted T1 CSM Wall design calculations, the groundwater level inside the excavation is specified to be lowered to 5 feet below bottom of excavation at all intermediate excavation stages and a minimum of 3 feet below general subgrade during the final stage of mass excavation.

The transition between the T1 and T2 excavations was modelled as a vertical wall for simplicity. In reality it will be a ramp with a fourth corner brace in the northeast corner of T2. The model is a reasonable representation based on current schedules which assume start of concrete placement in T2 mat before completion of T1 excavation. In the event T1 excavation is completed before the start of T2 concrete, induced deformation would increase.

Unit	Unit Weight (pcf)	Ko	c (psf)	φ' (deg)	E (ksf)	ν
Fill	120	0.47	0	32	278	0.20
Dune Sand	125	0.60	0	36	605	0.35
Marine Deposits	100	0.60	0.60σ'z	0	563	0.49
Colma Sand	133	0.60	150	36	2089	0.35
Old Bay Clay Crust	116	0.70	3500	0	1066	0.49
OBC (Case D)	112	0.70	0.31σ'z	0	1336	0.49
Alluvium/Colluvium	125	0.50	0	32	2768	0.45
Bedrock	NA	NA	NA	NA	NA	NA

Assumed Soil Properties

The Marine Deposits and Old Bay Clay were assumed to behave as undrained materials beginning with stress changes that are applicable to the first dewatering stage. The Old Bay Crust was assumed to be six feet thick and behave as an undrained material inside and outside of the excavations. The crust is modelled with an undrained strength of 3,500 psf based on Stress History and Normalized Soil Engineering Properties (SHANSEP) correlations with over-consolidation ratios. However, additional geotechnical testing data received on 6/4/17 report undrained strengths between 1,500 and 4,000 psf in the depth range from 75 to 90 FT below grade. As such the 3,500 psf used in this analysis may be non-conservative.

Table 1: Soil Properties

A Poisson's ratio of 0.49 was applied to the materials that are assumed to behave in an undrained manner. Therefore, this analysis is considered to provide only a rough approximation of deformation behavior prior to the dissipation of excess positive, or negative, soil pore pressures over time.

It should be noted that for the 3D analysis we added some effective cohesion (150 psf) to the Colma Sand to prevent passive failure within the ground at the elevator pit during pre-loading of the upper level. The effective friction angle was lowered from 38 degrees to 36 degrees to approximate the failure envelope for the 38 degree value.

Properties of CSM Wall, Internal Bracing, Drilled Shafts and Soil-Cement Buttresses

The CSM walls have been modeled using shell elements with bi-directional stiffness. For each case, the depth of CSM wall is 116 ft. Note that the wall depth in the current CSM plan is 115 ft. The flexural wall stiffness utilized in the model is based on the section properties of 30-in deep wide flange soldier piles alone without any contribution from the soil-cement. We understand that Malcolm plans to use W30 sections at the T1 excavation and W33 sections at the T2 excavation, which are stiffer than a W30 section, but this difference does not warrant reanalysis at this time. The flexural stiffness values for the CSM walls are provided in Table 2 and 3 for the T1 and T2 excavations, respectively. The bolted splice at 95 FT depth in perimeter soldier piles will limit moment capacity below that point, however since parametric studies indicated limited effect of stiffness in this pile segment, the T1 model employs a uniform parameter below 35 Ft depth.

Wall	Top Elevation	Bottom Elevatio n	Total Depth (feet)	Top 35' EI (k-in ² /ft)	>35' EI (k-in²/ft)				
25 Jessie	+7	-109	116	66,700,000 94,975,000					
Other Perimeter	Other Perimeter +7 -89		96	48,430,000	59,667,500				
Elevator Pit (E-W)	-66.5 (shored grade) -64 (top of pile)	-110	46	1: (W14x233 throu	5,870,900 ughout the whole depth)				
Elevator Pit (N-S)	-66.5 (top of pile and grade are same)	-96.5	30	5,267,450 (W14x90 throughout the whole depth)					

Table 2: T1-25 Jessie CSM Wall Properties

Table 3: T2-25 Jessie CSM Wall Properties

Wall	Top Elevation	Bottom Elevatio n	Total Depth (feet)	Top 35' 35'-94' 35'-94' 35'-94' 35'-94' 35'-94' 35'-94' 35'-94' 35'-94' 35'-94' 35'-94' 35'-94' 35'-34' <t< th=""><th>>94' EI (k-in²/ft)</th></t<>		>94' EI (k-in ² /ft)
25 Jessie	+7	-109	116	66,700,000 94,975,000 66,700,00		
Other perimeter	+7	-82	89	66,700,000 94,975,000 NA		
Elevator Pit (E-W)	-53.5 (top of pile) -58 (shored grade)	-82	28.5	5,267,450 (W14x90 throughout whole depth)		le depth)
Elevator Pit (N-S)	-55 (top of pile) -58 (shored grade)	-87	32	7,276,360 (W14x120 throughout whole depth)		

6.5-foot diameter drilled shafts to rock are included within the modeled cross-section. An equivalent square cross-section was used in lieu of circular shapes as discussed previously.

We have used solid state elements with interface elements to model these structural elements, see Figure 1 for approximate locations, with an area of 33 ft² and a cracked moment of inertia of 44 ft⁴, which is half the calculated value. We assumed a Young's modulus value of 1,450 ksi, which is consistent with earlier studies. The drilled shafts were assumed to have a fixed support at the bedrock surface. Interface elements have been employed to model the soil-structure interaction between the drilled shafts and the soil below subgrade.

Unreinforced 3-foot thick CSM buttresses extend 24 feet perpendicular to the CSM shoring wall from ground surface to a depth of 116 feet below ground surface were employed in the model. However, nominal reinforcement, W14s at 12 ft centers along the panel length will be installed in the field. The soil-cement has been modeled with elastic properties correlated to an average unconfined compressive strength of 150-200 psi. Assumed deformation parameters are presented in Table 4. Elastic interface elements have been employed to model the soil-structure interaction between the soil-cement and in situ ground conditions.

Table 4: Soil-Cement Properties

E (psi)	ν
40,000	0.2

Interfaces

Interface elements were used for the 3D model with k_n (normal stiffness) and k_t (tangential stiffness) determined automatically for the interface elements by the "Interface Wizard", which is a feature of the Midas software. This program function automatically assigns interface parameters at the T2 wall interfaces. Those assigned parameters are listed in Table 5.

Interface	E _{OED} (psi)	G(psi)	k _n	k _t	k _t /G
Fill to CSM Wall	2144	804	1800	165	0.205
Dune Sand to CSM Wall	6742	1556	3500	315	0.202
Marine Deposits to CSM Wall	7323	1417	3170	290	0.205
Colma Sand to CSM Wall	19528	5580	12500	1300	0.233
Old Bay Clay Crust to CSM Wall	9966	2847	5500	490	0.172
Old Bay Clay to CSM Wall	9966	2847	5500	490	0.172
Buttresses to CSM Walls	53846	15385	80000	4000	0.269
Shafts to Colma Sand	19528	5580	12500	1300	0.233
Shafts to Old Bay Clay Crust	9966	2847	5500	490	0.172
Shafts to Old Bay Clay	9966	2847	5500	490	0. 172
Shafts to Alluvium/Colluvium	25873	7392	15000	1500	0.203

Table 5: Elastic Interface Element Properties

Internal Bracing

The internal bracing has been modeled using solid state structural elements that have the same structural properties as those shown on the temporary support of excavation design documents prepared by Brierley, which is a departure from the 1-D truss elements at 3-foot spacing that were used in the 2D models. For this study, each main excavation strut is pre-loaded to 50% of its maximum ASD compression demand. The ASD compression demand for each strut can be found in Brierley's bracing design calculations for the T1 and T2 bracing. The struts at the elevator pit excavations are specified to be preloaded to 100% of their ASD design load;

however, these values need to be reduced slightly for modeling purposes to avoid local passive failures behind the elevator pit shoring walls.

In the analysis, each bracing level is installed and preloaded prior to the next stage of excavation.

We understand that the project team agreed to reduce main basement excavation bracing level one pre-load values to 35 to 40% of the design load and that the other levels will be pre-loaded to 75% of the design value. Those updated preloads have not been incorporated into this analysis.

SUMMARY OF RESULTS

Previous Analysis

Tables 6 presents a summary of the numerical analyses performed for the T1 excavation by Brierley to date. The results of the four cases, Cases A through D, that were run with a pre-load value of 50% of design load were are presented in Table 6 and the results are discussed in our memorandum dated February 22nd, 2017. This memorandum was re-issued with a corrected Figure 3 on June 6th, 2017. Case D was updated for pre-load values of 75% of design load the results of that analysis are presented in our memorandum dated May 16th, 2017

- Case A: Drilled Shafts Only
- Case B: CSM Buttresses Only
- Case C: Drilled Shafts and CSM Buttresses with Upper Bound Soil Strength
- Case D: Drilled Shafts and CSM Buttresses with Lower Bound Soil Strength (50% and 75% Pre-load values)

	Wall Displacement						Ground Surface		Near Pile Tip		
	Тор	B1	B2	B3	B4	Max	Heave	$\Delta v 2 ft$	Δv 92 ft	$\Delta v 2 ft$	Δv 92 ft
Case	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
А	0.5	0.8	1.5	1.9	2.2	2.5	10.0	0.5	1.7	0.5	1.5
В	1.6	1.8	2.0	2.2	2.5	3.2	7.0	2.5	2.1	2.0	1.5
С	1.5	1.7	2.0	2.2	2.5	3.1	9.5	2.6	2.0	2.0	1.5
D 50%	1.6	1.8	2.1	2.4	2.7	3.6	10.6	3.0	2.4	3.0	1.5
D 75%	1.1	1.3	1.7	1.9	2.3	3.4	6.0	3.0	2.0	2.3	1.2

Table 6: Summary of Predicted Deformations

Current Analysis

The surface plan, profile and isometric view of the model are presented in Figure 1. Due to the large lateral extent of the model and the fact that both the T1 and T2 and pit excavations were modeled, a simplified soil profile with horizontal contacts was used and slight elevation adjustments were made to accommodate the model grid.

Figure 2 presents contours of total deformation at ground surface. The deep-seated nature of ground deformation can be seen in the pattern of deformation around the perimeter of the excavation with total deformation ranging from 1.4 to 2.0 in. at distance from the excavation.

The influence of the piles that support 25 Jessie can be seen in the lesser values of predicted total deformation at ground surface in that area compared to elsewhere around the perimeter of the T1 and T2 excavations.

Contours of total deformation at the top of the Colma Sand are presented in Figure 3. In this figure, the deep-seated nature of ground deformation is evident around the perimeter of both excavations. Deformations associated with the vertical loads transmitted by the piles to the Colma Sand and excavation-induced deformations are noticeable below the limits of 25 Jessie where the total displacement is approximately 1.7 in.

Contours of total T2 CSM wall total deformation are presented in Figure 4 for the final excavation stage at T1 25 Jessie (Stage II). At the north wall, the wall adjacent to 25 Jessie, the maximum total deformation, which is mostly in the lateral direction, is on the order of 1.0 in. and ranges from 0.8 to 0.9 in. at depth. The range of deformations above the bottom of excavation is similar, 1.0 to 1.1 in., at the south wall. The largest total deformation, 1.8 in. occurs along the west wall. At the east wall, the total deformation ranges from 0.9 to 1.0 in.

We note that we have tried several options to model the connections at CSM wall corners including; 1.) wall-to-wall interface and, 2) end release at the ends of the wall. These options had almost no impact on the value of maximum displacement and the influence in behavioral change was limited to a small zone near the corners of the wall.

Contours of total T1 CSM wall total deformation are presented in Figure 5 for Stage II. At the west wall, the wall adjacent to 25 Jessie, the maximum total deformation, which is mostly in the lateral direction, is on the order of 0.8 to 1.0 in. near the bottom of the excavation and ranges from 0.8 to 1.1 in. at depth near the bottom of the wall. The range of deformations at the south wall is 0.8 to 0.9 in. The largest total deformation, 2.4 in. occurs along the east wall near the bottom of the T1 excavation.

Figure 6 presents contours of lateral deformation at ground surface in the north-south direction. Ground deformations to the north beneath 25 Jessie are on the order of 0.1 to 0.5 in. and they are approximately 0.4 to 0.6 in. to the south of the two excavations.

Figure 7 presents contours of lateral deformation at top of the Colma Sand in the north-south direction. Ground deformations to the north beneath 25 Jessie are on the order of 0.4 to 0.5 in. with a maximum value of 0.5 in. directly behind the wall. They are approximately 0.6 to 1.2 in. to the south of the excavation with a maximum value of 1.2 in. directly behind the T2 south wall.

Contours of lateral T2 CSM wall lateral deformation in the north-south direction are presented in Figure 8. The maximum lateral deformation is on the order of 1.3 in. at the south wall near the bottom of the excavation. The maximum lateral deformation at the north wall, the wall closest to 25 Jessie is approximately 1.0 in.

Contours of lateral T1 CSM wall lateral deformation in the north-south direction are presented in Figure 9. The maximum lateral deformation is on the order of 1.2 in. at the easternmost south wall near the bottom of the excavation. The maximum lateral deformation the other southern wall, the wall closest to T2, are near the bottom of the excavation and are approximately 0.9 in. and is not near the 25 Jessie structure.

Figure 10 presents contours of lateral deformation at ground surface in the east-west direction. Ground deformations to the west are on the order of 0.3 to 0.5 in. and they are approximately 0.2 to 0.5 in. the east of the excavations.

Figure 11 presents contours of lateral deformation at top of the Colma Sand in the east-west direction. Ground deformations to the west or the T2 excavation are on the order of 0.5 to 1.4 in. with a maximum value of 1.4 in. directly behind the west wall. They are approximately 0.5 to 1.9 in. east of the T1 excavation with a maximum value of 1.9 in. directly behind the east wall, which is opposite the 25 Jessie structure.

Contours of T2 CSM wall lateral deformation in the east-west direction are presented in Figure 12. The maximum lateral deformation is on the order of 1.7 in the west wall and 0.7 in. at east wall. Lateral deformations below the bottom of the excavation range from 0.3 to 0.4 in.

Contours of T1 CSM wall lateral deformation in the east-west direction are presented in Figure 13. The maximum lateral deformation is on the order of 2.3 in the east wall and 1.5 in. at west wall. Lateral deformations below the bottom of the excavation range from 1.1 at the east wall to 0.8 in at the west wall.

Figure 14 presents contours vertical deformation at ground surface. Ground deformations range from 1.0 to 1.8-in. around the perimeter of the excavation. They are predicted to be approximately 0.5 to 1.8 in. the 25 Jessie structure.

Contours of vertical deformation at the top of the Colma Sand are shown in Figure 15. Around the perimeter of the excavation the vertical deformation ranges from 0.8 to 0.5 in. Under 25 Jessie the deformation ranges from 0.5 to 1.5 in., with the larger deformations occurring along the northern edge of the building.

Contours of major principal stress in the drilled shafts are shown in Figure 16. The maximum tensile stress predicted in the drilled shafts ranges from 390 to 465 psi within the T1 excavation and is primarily located on the edge of the shaft that faces away from the perimeter CSM walls.

Contours of minor principal stress in the drilled shafts are shown in Figure 17. The maximum compressive stress predicted in the drilled shafts is approximately 143 psi within the T1 excavation.

Figures 18 and 19 present contours of major principal stress and minor principal stress, respectively. The maximum tensile stress is 38 psi in the T2 excavation and 49 psi in the T1 excavation both occur near the top of the CSM buttresses at the edge farthest from the CSM wall. The maximum compressive stress in the T2 and T1 excavations are 197 psi and 220 psi, respectively. The stress concentrations are located at the top of the buttresses where they contact the CSM perimeter wall adjacent to 25 Jessie.

Figure 20 presents an isometric view of the T2 and elevator pit excavations along with contours of total deformation. The maximum total deformation within the limits of the T2 excavation is 1.4 in. and is predicted to occur in the northeast corner of the excavation near the common wall with

the T1 excavation. The maximum total deformation within the elevator pit excavation is 1.5 in. and occurs near the center of the excavation.

Contours of lateral displacement in the north-south direction for the T2 elevator pit CSM walls are presented in Figure 21. The maximum lateral deformation in the south wall is 0.5 to 0.6 in. near the middle of the wall. The east wall translates laterally northward toward the T1 excavation approximately 0.4 in while the west wall translate slightly lesser amount, 0.2 in. to the north. The lateral displacement in the north wall that was induced by the excavation of the elevator pit (refer to the T2 3D memo) has been reduced to negligible amounts due to the lateral translation to the north towards the T1 excavation.

Contours of lateral displacement in the east-west direction for the T2 elevator pit CSM walls are presented in Figure 22. The maximum lateral deformation in the east-west direction is 0.3 to 0.4 in. and occurs in the west wall. The north and south wall translate laterally eastward approximately 0.2 in. to 0.3 in., respectively. The east wall translates eastward approximately 0.1 in. to 0.2 in. with the highest concentration of displacement in the northeast corner closest to the T1 excavation.

Figure 23 presents an isometric view of the T1 and elevator pit excavations along with contours of total deformation. The maximum total deformation within the limits of the T1 excavation is 1.7 in. and is predicted to occur near the middle of the excavation. The maximum total deformation within the elevator pit excavation is 1.3 in. and occurs near the center of the excavation. Note that the localized, larger total deformations along the northern edge of the mesh are on the nominal limit of the model and are not considered to be representative of actual behavior. Due to size of the T1 excavation and its impact on run time, the length of the excavation was truncated in the Stage 2 3D model. The northern boundary of the model was established to allow for an assessment of the 25 Jessie structure and the configuration of the bracing system needed to be adjusted at the northern end to capture the behavior along the western and eastern walls. The deformations along the northern boundary of the model do not reflect actual ground behavior given that the bracing system that will be constructed at the northern end of the T1 excavation, i.e., at 525 Market, is not accurately modeled in Stage 2, e.g., there are no corner struts at the northern end of the model.

Contours of lateral displacement in the north-south direction for the T1 elevator pit CSM walls are presented in Figure 24. The maximum lateral deformation in the east wall is 0.2 to 0.3 in southward near the top and bottom of the wall, respectively. The east west wall translates laterally southward approximately 0.5 in. The lateral displacement in the north ranges from 0.5 to 0.6 in. southward.

Contours of lateral displacement in the east-west direction for the T1 elevator pit CSM walls are presented in Figure 25. The maximum lateral deformation in the east-west direction is 0.5 in. eastward in east wall. Similar magnitudes of lateral translation are predicted in the northern wall near the bottom of the wall. The east and south walls are shown to translate laterally eastward approximately 0.2 to 0.3 in.

Time Dependent Soil Behavior

The current modeling utilizes undrained strength parameters for the fine-grained soils (Marine Deposits, Old Bay Clay Crust and Old Bay Clay). As a result, the modeling does not capture the dissipation of pore water pressure and the transition from undrained to drained strength and stiffness over time. As a result, the behavior that is reported herein is different from long-term behavior during and after building construction. This analysis would require a fully-coupled soil-groundwater model that captures the time dependence of the soil properties and changes in stress state. While the models addressed herein may not evaluate stability or geometric deformation in absolute terms, certain behavioral trends can be surmised and the models are considered useful for that purpose.

Concluding Remarks

The purpose of the finite element analysis presented herein was to provide the team with insight about the behavior of the CSM walls, drilled shafts, CSM buttresses and ground inside and outside the excavations for T1 and T2 and the elevator pits therein. These should not be taken as absolute values as strength and deformation parameters of the soil might be different than assumed herein. Moreover, the boundary conditions for the 3D model are different from the 2D models performed to date, which replicate plane-strain conditions. Due to the limited dimensions of the elevator pit, it was not modelled in the 2D parametric studies performed to date.

Previous studies have applied preload values for Level B1 in the main excavation based on 50% and 75% of the loads derived for the full excavation depth. This level of pre-loading in B1 appears to result in outward wall displacement and ground heave effects around the excavation. In reality, it is unlikely that these pre-loads could be generated, or if applied could result in heave impacts to adjacent structures and facilities. As such, models run with those values should be considered as non-conservative with respect to near field and surficial estimated deformation. We understand that the project team has agreed to reduce the main basement excavation bracing level one pre-load values to 35 to 40% of the design load and that other levels will be pre-loaded to 75% of the design value. Those updated preloads have not been incorporated in this analysis, which has applied a preload value of 50% of design load.

It should be noted that we had to add some effective cohesion (150 psf) to the Colma Sand to prevent passive failure within the ground at the elevator pit during pre-loading of the upper level bracing. The effective friction angle was lowered from 38 degrees to 36 degrees to approximate the failure envelope for the 38 degree value.

The predicted deformations levels below the footprint of the 25 Jessie structure are ground deformations, not structural deformation. Estimate deformation of the 25 Jessie structure and the underlying foundation system is outside the scope of this work.

We note that the predicted deformations in this model, particularly near-field effects, are sensitive to interface properties. As such, large scale, deep-seated deformations can be estimated with more confidence compared to deformations immediately adjacent to walls or structural elements.

We have tried several options to model the connections at CSM wall corners including; 1.) wallto-wall interface and, 2) end release at the ends of the wall. These options had almost no impact on the value of maximum displacement and the influence in behavioral change was limited to a small zone near the corners of the wall.

Finally, the localized, larger total deformations along the northern edge of the mesh are not considered to be representative of actual behavior. The northern boundary of the excavation modeled does not correspond to northern limit of actual Tower 1 excavation. This northern boundary was established to allow for assessment of the 25 Jessie structure, while aiming to limit overall size and run time of the model.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 12 of 38

Figure 1a: Isometric View of Stage II Excavation

Figure 1b: Key Plan

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 13 of 38

BRIERLEY ASSOCIATES Creating Space Underground Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 14 of 38

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 15 of 38

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 16 of 38

Figure 3: Contours of Total Displacement at Top of Colma Sand, Final Excavation Stage II.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 17 of 38

Figure 4: Contours of T2 CSM Wall Total Deformation at Ground Surface, Final Excavation Stage II.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 18 of 38

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 19 of 38

Figure 6: Contours of Lateral Deformation (N-S) at Ground Surface, Final Excavation Stage II.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 20 of 38

Figure 7: Contours of Lateral Deformation (N-S) at Top of Colma Sand, Final Excavation Stage II.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 21 of 38

Figure 8: Contours of T2 CSM Wall Lateral Deformation (N-S), Final Excavation Stage II.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 22 of 38

Figure 9: Contours of T1 CSM Wall Lateral Deformation (N-S), Final Excavation Stage II.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 23 of 38

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 24 of 38

. Figure 11: Contours of Lateral Deformation (E-W) at Top of Colma Sand, Final Excavation Stage II

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 25 of 38

Figure 12: Contours of T2 CSM Wall Lateral Deformation (E-W), Final Excavation Stage II.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 26 of 38

BRIERLEY ASSOCIATES Creating Space Underground

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 27 of 38

Figure 14: Contours of Vertical Deformation at Ground Surface, Final Excavation Stage II.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 28 of 38

Figure 15: Contours of Vertical Deformation at Top of Colma Sand, Final Excavation Stage II.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 29 of 38

Figure 16: Contours of Major Principal Stresses (Tension) in Drilled Shafts, Final Excavation Stage II.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 30 of 38

Figure 17: Contours of Minor Principal Stresses in Drilled Shafts, Final Excavation Stage II.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 31 of 38

Figure 18: Contours of Major Principal Stress (Tension) in CSM Buttresses, Final Excavation Stage II.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 32 of 38

Figure 19: Contours of Minor Principal Stress in CSM Buttresses, Final Excavation Stage II.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 33 of 38

Figure 20: Isometric View of T2 Elevator Pit Excavation with Contours of Total Deformation.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 34 of 38

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 35 of 38

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 36 of 38

Figure 23: Isometric View of T1 Elevator Pit Excavation.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 37 of 38

Figure 24: Contours of T1 CSM Pit Wall Lateral Deformation (N-S), Final Stage II.

Oceanwide Center 526, Mission Street, San Francisco 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1) July 7, 2017 Page 38 of 38

FDIC Building at 25 Jessie Street, San Francisco, CA

Appendix B

Structural Calculations FDIC Building Evaluation for Excavation Induced Ground Movements

December 15, 2017

Prepared by: Nabih Youssef Associates NYA Project: 17164.01

Prepared for: Oceanwide Center LLP, 88 First Street, 6th Floor, San Francisco, CA 94105

Los Angeles • San Francisco • Irvine One Sansome Street, Suite 3670 • San Francisco, CA 94104 • T: 415.397.5213 • www.nyase.com **Building Evaluation for Excavation Induced Ground Movements**

12/15/2017

Table of Contents

A Building Displacements & Drifts

- A.1.1 Roof Drift due to Excavation Induced Ground Settlement
- A.1.2 Level 2 Drift due to Excavation Induced Ground Settlement
- A.2.1 Roof Drift Serviceability Level Wind
- A.2.2 Level 2 Drift Serviceability Level Wind

B Building Foundation Checks

- B.1.1 Pile Group Check under Gravity Loads
- B.1.2 Pile Group Check under Seismic Loads
- B.1.3 Pile Element Check including Excavation Induced Ground Settlement effects
- B.2.1 Grade Beams Gravity
- B.2.2 Grade Beams Seismic

C Building Superstructure Checks

- C.1.1 Moment Frame (MF) Beams Gravity
- C.1.2 Moment Frame (MF) Beams Seismic
- C.2.1 Moment Frame (MF) Columns Gravity
- C.2.2 Moment Frame (MF) Columns Seismic
- C.2.3 Gravity Columns

Building Evaluation for Excavation Induced Ground Movements

C.3.1 Moment Frame (MF) Connections – Seismic

D Threshold Limit - Check at 88% of Excavation Induced Ground Settlements

D.1 Moment Frame (MF) Connections – Threshold Settlement Magnitude

Figure: 3-D view of FDIC Building Analysis Model (See Report Section 3 for "Description of Building Model & Analysis")

A.1.1 Roof Drift due to Excavation Induced Ground Settlement (ref. Report Section 5.B & 5.E)

Roof Drift under H case

Origin m	loveme	nt				
Story	Label	Unique Name	Load Case/Combo	UX	UY	UZ
				in	in	in
GRD	1	1	Н	0.6	-0.47	-0.544
GRD	5	8	Н	0.6	-0.47	-0.055
GRD	14	241	Н	0.6	-0.47	0.042
GRD	66	281	Н	0.6	-0.47	-0.349
GRD	71	81	Н	0.6	-0.47	-1.364
GRD	75	88	Н	0.6	-0.47	-0.935

Story Label Unique Name Load Case/Combo OX OY OZ OX~ OY~ Roof Drift Dr										max	0.112%
Story Label Unique Name Load Case/Combo OX OY OZ OX~ OY~ Roof Drift Dr	RF	75	106	Н	-1.2702	3.0283	-1.0806	1.8702	-3.4983	3.498	0.111%
Story Label Unique Name Load Case/Combo UX UY UZ UX~ UY~ Roof Drift Dr	RF	71	104	Н	-1.2702	2.9529	-1.5378	1.8702	-3.4229	3.423	0.109%
Story Label Unique Name Load Case/Combo UX UY UZ UX~ UY~ Roof Drift Dr	RF	66	293	Н	-1.2567	3.0463	-0.3719	1.8567	-3.5163	3.516	0.112%
Story Label Unique Name Load Case/Combo UX UY UZ UX~ UY~ Roof Drift Dr	RF	14	253	Н	-1.2113	3.0463	0.0367	1.8113	-3.5163	3.516	0.112%
Story Label Unique Name Load Case/Combo UX UY UZ UX~ UY~ Roof Drift Dr	RF	5	26	Н	-1.1978	3.0283	-0.1804	1.7978	-3.4983	3.498	0.111%
in in in in in in in	RF	1	24	Н	-1.1978	2.9529	-0.6864	1.7978	-3.4229	3.423	0.109%
Istory Label Unique NamelLoad Case/Combo UX UY UZ UX~ UY~ Roof Drift Dri					in	in	in	in	in		
Change Label Universe Name Land Case (Cambra LIV LIV LIV LIV LIV Deaf Duift Dui	Story	Label	Unique Name	Load Case/Combo	UX	UY	UZ	UX~	UY~	Roof Drift	Drift Ratio

tilda(~) is relative displacement from support movement and settlement. Settlement input is based on contour map by Brierly Associates.

MEMORANDUM dated on July 7, 2017.

Figure: Excavation Induced Ground Settlement per Brierley Report

A.1.2 Level 2 Drift due to Excavation Induced Ground Settlement (ref. Report Section 5.B & 5.E)

Level 2 Drift under H case

Story	Label	Unique Name	Load Case/Combo	UX	UY	UZ	UX~	UY~	Roof Drift	Drift Ratio
				in	in	in	in	in		
2	1	3	Н	0.2544	0.1871	-0.5965	0.3456	-0.6571	0.657	0.110%
2	5	10	Н	0.2544	0.2052	-0.1024	0.3456	-0.6752	0.675	0.113%
2	14	243	Н	0.2512	0.2096	0.0407	0.3488	-0.6796	0.680	0.113%
2	66	283	Н	0.2403	0.2096	-0.3527	0.3597	-0.6796	0.680	0.113%
2	71	83	Н	0.2370	0.1871	-1.4258	0.3630	-0.6571	0.657	0.110%
2	75	90	Н	0.2370	0.2052	-0.9898	0.3630	-0.6752	0.675	0.113%
									max	0.113%

tilda(~) is relative displacement from support movement and settlement.

A.2.1 Roof Drift - Serviceability Level Wind (ref. Report Section 5.B & 5.E)

Roof Drift under Wind Load

0.42 from 700 yr RP to 10 yr RP

Service	eability le	evel,	factor is:	0.42	from 700	yr RP to 10) yr RP				
				per ASCE	7-05 and ASC	E 7-10 Com	mentary ar	nc IBC 2015 Ta	able 1604.3	Note	
Story	Label	Unique Name	Load Case/Combo	UX	UY	UZ	RX	RY	RZ	Roof Drift	Drift Ratio
	- 1	24	W. Causian 1	<u>n</u>	in	in 0.070	rad	rad	rad	2 200	0.1070/
	1	24	W, Service 1	3.309	0.000	0.079	0.000	0.000	0.000	3.369	0.107%
	1	24	W, Service 2	0.49Z	5.0/9 _0.31/	0.110	0.000	0.000	0.001	2.0/9	0.123%
	1	24	W Service 4	2.007	0.314	0.059	0.000	0.000	-0.001	2.034	0.090%
RE	1	24	W Service 5	0.868	2 300	0.000	0.000	0.000	0.001	2.220	0.07070
RF	1	21	W Service 6	-0 130	3 419	0.001	0.000	0.000	0.002	3 419	0.109%
RF	1	24	W. Service 7	2,158	-2.909	-0.023	0.000	0.000	-0.001	2,909	0.092%
RF	1	24	W, Service 8	2.896	2.910	0.141	0.000	0.000	0.001	2.910	0.092%
RF	1	24	W, Service 9	2.225	-2.802	-0.019	0.000	0.000	0.001	2.802	0.089%
RF	1	24	W, Service 10	1.015	-1.565	-0.016	0.000	0.000	-0.002	1.565	0.050%
RF	1	24	W, Service 11	2.779	1.566	0.105	0.000	0.000	0.002	2.779	0.088%
RF	1	24	W, Service 12	1.569	2.803	0.107	0.000	0.000	-0.001	2.803	0.089%
RF	5	26	W, Service 1	3.369	0.000	-0.075	0.000	0.000	0.000	3.369	0.107%
RF	5	26	W, Service 2	0.492	4.906	0.113	-0.001	0.000	0.001	4.906	0.156%
RF	5	26	W, Service 3	2.834	0.326	-0.055	0.000	0.000	0.001	2.834	0.090%
RF	5	26	W, Service 4	2.220	-0.326	-0.057	0.000	0.000	-0.001	2.220	0.070%
RF	5	26	W, Service 5	0.868	4.210	0.087	-0.001	0.000	0.002	4.210	0.134%
RF	5	26	W, Service 6	-0.130	3.149	0.083	0.000	0.000	0.000	3.149	0.100%
RF	5	26	W, Service 7	2.158	-3.679	-0.141	0.001	0.000	-0.001	3.679	0.117%
RF	5	26	W, Service 8	2.896	3.679	0.029	0.000	0.000	0.001	3.679	0.117%
RF	5	26	W, Service 9	2.225	-2.119	-0.103	0.000	0.000	0.001	2.225	0.071%
RF	5	26	W, Service 10	1.015	-3.405	-0.108	0.000	0.000	-0.002	3.405	0.108%
RF	5	26	W, Service 11	2.779	3.405	0.024	0.000	0.000	0.002	3.405	0.108%
RF	5	26	W, Service 12	1.569	2.119	0.019	0.000	0.000	-0.001	2.119	0.067%
RF	14	253	W, Service 1	3.369	0.000	-0.008	0.000	0.000	0.000	3.369	0.10/%
RF	14	253	W, Service 2	0.308	5.150	0.007	-0.001	0.000	0.001	5.150	0.163%
KF DF	14	253	W, Service 3	2./19	0.478	-0.005	0.000	0.000	0.001	2.719	0.086%
	14	253	W, Service 4	2.335	-0.4/9	-0.006	0.000	0.000	-0.001	2.335	0.074%
KF DF	14	253	W, Service 5	0.543	4.041	0.005	-0.001	0.000	0.002	4.041	0.147%
	14	200	W Service 7	2 206	3.004	0.005	0.000	0.000	0.000	2,004	0.098%
	14	200	W, Service 7	2.290	-3.003	-0.011	0.000	0.000	-0.001	2,003	0.123%
	14	255	W Service 0	2.750	-1.056	-0.001	0.000	0.000	0.001	2 102	0.123%
	14	253	W Service 10	1 345	-1.950	-0.008	0.000	0.000	-0.001	2.102	0.007%
RE	14	253	W Service 11	2 440	3 843	0.009	0.000	0.000	0.002	3.843	0.122 /0
RF	14	253	W Service 12	1 692	1 956	-0.001	0.000	0.000	-0.002	1 956	0.062%
RF	66	293	W Service 1	3 370	0.000	-0.001	0.000	0.000	0.001	3 370	0.107%
RF	66	293	W Service 2	-0 308	5 150	-0.007	-0.001	0.000	0.000	5 150	0.163%
RF	66	293	W. Service 3	2.335	0.478	-0.006	0.000	0.000	0.001	2.335	0.074%
RF	66	293	W. Service 4	2.719	-0.479	-0.005	0.000	0.000	-0.001	2.719	0.086%
RF	66	293	W, Service 5	-0.544	4.641	-0.005	-0.001	0.000	0.002	4.641	0.147%
RF	66	293	W, Service 6	0.081	3.084	-0.005	0.000	0.000	0.000	3.084	0.098%
RF	66	293	W, Service 7	2.758	-3.863	-0.001	0.000	0.000	-0.001	3.863	0.123%
RF	66	293	W, Service 8	2.296	3.862	-0.011	0.000	0.000	0.001	3.862	0.123%
RF	66	293	W, Service 9	1.692	-1.956	-0.001	0.000	0.000	0.001	1.956	0.062%
RF	66	293	W, Service 10	2.449	-3.843	0.000	0.000	0.000	-0.002	3.843	0.122%
RF	66	293	W, Service 11	1.345	3.843	-0.009	0.000	0.000	0.002	3.843	0.122%
RF	66	293	W, Service 12	2.102	1.956	-0.008	0.000	0.000	-0.001	2.102	0.067%
RF	71	104	W, Service 1	3.370	0.000	0.079	0.000	0.000	0.000	3.370	0.107%
RF	71	104	W, Service 2	-0.492	3.879	-0.110	0.000	0.000	0.001	3.879	0.123%
RF	/1	104	W, Service 3	2.220	-0.314	0.060	0.000	0.000	0.001	2.220	0.070%
KF DF	/1	104	W, Service 4	2.834	0.314	0.059	0.000	0.000	-0.001	2.834	0.090%
	/1	104	W, Service 5	-0.868	2.399	-0.081	0.000	0.000	0.002	2.399	0.076%
	/1	104	W, Service 6	0.130	3.419	-0.083	0.000	0.000	0.000	3.419	0.109%
	71	104	W, Service 7	2.090	-2.909	0.141	0.000	0.000	-0.001	2.909	0.092%
	71	104	W, Service 8	2.100	2.910	-0.023	0.000	0.000	0.001	2.910	0.092%
	71	104	W, Service 9	1.509	-2.602	0.107	0.000	0.000	0.001	2.602	0.089%
	71	104	W Service 11	1 015	1 566	-0.016	0.000	0.000	0.002	1 566	0.000%
	71	104	W Service 12	2 2 2 2 5	2 803	-0.010	0.000	0.000	-0.002	2 803	0.030%
DE	75	104	W Service 12	3 370	2.005	-0.019	0.000	0.000	0.001	2.005	0.00970
RF	75	106	W Service 2	-0 492	4 906	-0 113	-0.001	0.000	0.000	4 906	0.156%
RF	75	106	W. Service 3	2 220	0 326	-0.057	0 0001	0 000	0 001	2 220	0.070%
RF	75	106	W. Service 4	2 834	-0 326	-0.055	0.000	0.000	-0.001	2.834	0.090%
RF	75	106	W, Service 5	-0.868	4,210	-0.087	-0.001	0.000	0.002	4.210	0.134%
RF	75	106	W, Service 6	0.130	3.149	-0.083	0.000	0.000	0.000	3,149	0.100%
RF	75	106	W, Service 7	2.896	-3.679	0.029	0.000	0.000	-0.001	3.679	0.117%
RF	75	106	W, Service 8	2.158	3.679	-0.141	-0.001	0.000	0.001	3.679	0.117%
RF	75	106	W, Service 9	1.569	-2.119	0.019	0.000	0.000	0.001	2.119	0.067%
RF	75	106	W, Service 10	2.779	-3.405	0.024	0.000	0.000	-0.002	3.405	0.108%
RF	75	106	W, Service 11	1.015	3.405	-0.108	0.000	0.000	0.002	3.405	0.108%
RF	75	106	W, Service 12	2.225	2.119	-0.103	0.000	0.000	-0.001	2.225	<u>0.071</u> %
										max	0.163%

A.2.2 Level 2 Drift - Serviceability Level Wind (ref. Report Section 5.B & 5.E)

Level 2 Drift under Wind Load Serviceability level, factor is:

0.42 from 700 yr RP to 10 yr RP

				per ASCE 7	-05 and ASC	<u>E 7-10 Con</u>	nmentary ar	<u>IBC 2015 T</u>	able 1604.3	8 Note	
Story	Label	Unique Name	Load Case/Combo	UX	UY	UZ	RX	RY	RZ	Roof Drift	Drift Ratio
	4	2	M/ Comise 1	in	in	in	rad	rad	rad	0 700	0 1000/
2	1	<u>చ</u>	W, Service 1	0.798	0.000	0.032		0.001	0.000	0.798	0.133%
2	1	3	W, Service 2	0.121	0.881	0.044	-0.001	0.000	0.000	0.881	0.14/%
2	1	2 2	W Service A	0.000	-0.004 0.085	0.024	0.000	0.001	0.000	0.000	0.112%
2	1 1	2	W Service 5	0.51/	0.000	0.024	-0.000 -0.001	0.001	0.000	0.517	0.000%
2	⊥ 1	ר ג	W Service 6	-0.220 -0.030	0.520	0.032	-0.001	0.000	0.001	0.520	0.000%
2	1	3	W. Service 7	0 508	-0.660	-0.000	0 001	0.001	0.000	0.660	0.110%
2	1	3	W Service 8	0.500	0.661	0.005	-0.001	0.001	0.000	0.689	0.115%
2	1	3	W. Service 9	0.540	-0.660	-0.007	0.001	0.001	0.000	0.660	0.110%
2	1	3	W, Service 10	0.223	-0.331	-0.006	0.000	0.000	-0.001	0.331	0.055%
2	1	3	W, Service 11	0.675	0.331	0.042	0.000	0.001	0.001	0.675	0.113%
2	1	3	W, Service 12	0.359	0.660	0.043	-0.001	0.000	0.000	0.660	0.110%
2	5	10	W, Service 1	0.798	0.000	-0.031	0.000	0.001	0.000	0.798	0.133%
2	5	10	W, Service 2	0.121	1.132	0.048	-0.001	0.000	0.000	1.132	0.189%
2	5	10	W, Service 3	0.680	0.085	-0.022	0.000	0.001	0.000	0.680	0.113%
2	5	10	W, Service 4	0.517	-0.085	-0.024	0.000	0.001	0.000	0.517	0.086%
2	5	10	W, Service 5	0.220	0.985	0.037	-0.001	0.000	0.001	0.985	0.164%
2	5	10	W, Service 6	-0.039	0.713	0.035	-0.001	0.000	0.000	0.713	0.119%
2	5	10	W, Service 7	0.508	-0.849	-0.059	0.001	0.001	0.000	0.849	0.142%
2	5	10	W, Service 8	0.689	0.849	0.013	-0.001	0.001	0.000	0.849	0.141%
2	5	10	W, Service 9	0.540	-0.4/1	-0.043	0.001	0.001	0.000	0.540	0.090%
2	5	10	W, Service 10	0.223	-0.804	-0.046	0.001	0.000	-0.001	0.804	0.134%
2	5	10	W, Service 11	0.0/5	0.803	0.011	-0.001	0.001	0.001	0.803	0.134%
2	Э 14	10	W, Service 12	0.359	0.471	0.008	-0.001	0.000	0.000	0.471	0.079%
2	14	243	W Service 2	0.75	1 102	0.002	-0.000	0.001	0.000	1 102	0.133%
2	14	243	W Service 3	0.675	0 125	-0.001	0.002	0.000	0.000	0.649	0.19970
2	14	243	W Service 4	0.547	-0.125	-0.001	0.000	0.001	0.000	0.547	0.091%
2	14	243	W. Service 5	0.138	1.094	0.001	-0.002	0.000	0.001	1.094	0.182%
2	14	243	W, Service 6	-0.025	0.694	0.001	-0.001	0.000	0.000	0.694	0.116%
2	14	243	W, Service 7	0.542	-0.894	-0.002	0.001	0.001	0.000	0.894	0.149%
2	14	243	W, Service 8	0.655	0.894	0.000	-0.001	0.001	0.000	0.894	0.149%
2	14	243	W, Service 9	0.506	-0.427	-0.001	0.001	0.001	0.000	0.506	0.084%
2	14	243	W, Service 10	0.308	-0.916	-0.001	0.001	0.001	-0.001	0.916	0.153%
2	14	243	W, Service 11	0.591	0.916	0.000	-0.002	0.001	0.001	0.916	0.153%
2	14	243	W, Service 12	0.392	0.426	0.000	-0.001	0.001	0.000	0.426	0.071%
2	66	283	W, Service 1	0.798	0.000	-0.002	0.000	0.001	0.000	0.798	0.133%
2	66	283	W, Service 2	-0.076	1.192	-0.001	-0.002	0.000	0.000	1.192	0.199%
2	66	283	W, Service 3	0.548	0.125	-0.001	0.000	0.001	0.000	0.548	0.091%
2	66	283	W, Service 4	0.649	-0.126	-0.001	0.000	0.001	0.000	0.649	0.108%
2	66	283	W, Service 5	-0.138	1.094	-0.001	-0.002	0.000	0.001	1.094	0.182%
2	66	203	W, Service o	0.025	0.094	-0.001	-0.001	0.000	0.000	0.094	0.110%
2	66	203	W Service 8	0.055	-0.894	-0.000	-0.001	0.001	0.000	0.894	0.149%
2	66	203	W Service 9	0.342	-0.427	0.002	0.001	0.001	0.000	0.094	0.14970
2	66	283	W Service 10	0.591	-0.916	0.000	0.002	0.001	-0.001	0.916	0.153%
2	66	283	W. Service 11	0.307	0.916	-0.001	-0.001	0.001	0.001	0.916	0.153%
2	66	283	W, Service 12	0.506	0.426	-0.001	-0.001	0.001	0.000	0.506	0.084%
2	71	83	W, Service 1	0.798	0.000	0.032	0.000	0.001	0.000	0.798	0.133%
2	71	83	W, Service 2	-0.121	0.881	-0.044	-0.001	0.000	0.000	0.881	0.147%
2	71	83	W, Service 3	0.517	-0.084	0.024	0.000	0.001	0.000	0.517	0.086%
2	71	83	W, Service 4	0.680	0.085	0.024	0.000	0.001	0.000	0.680	0.113%
2	71	83	W, Service 5	-0.220	0.526	-0.032	-0.001	0.000	0.001	0.526	0.088%
2	71	83	W, Service 6	0.039	0.795	-0.033	-0.001	0.000	0.000	0.795	0.133%
2	71	83	W, Service 7	0.689	-0.660	0.057	0.001	0.001	0.000	0.689	0.115%
2	/1	83	W, Service 8	0.508	0.661	-0.009	-0.001	0.001	0.000	0.661	0.110%
2	/1	83	W, Service 9	0.359	-0.660	0.043	0.001	0.000	0.000	0.660	0.110%
2	/1	83	W, Service 10	0.6/6	-0.331	0.042	0.000	0.001	-0.001	0.6/6	0.113%
2	71	60 93	W, Service 11	0.225	0.331	-0.000	-0.000	0.000	0.001	0.331	0.055%
2	71	00 00	W Service 1	0.340	0.000	-0.007	-0.001	0.001	0.000	0.000	0.110%
2	75	90	W Service 2	-0 121	1 132	-0.031	-0.001	0.001	0.000	1 132	0.13370
2	75	90	W Service 3	0.121	0.085	-0.024	0.001	0.000	0.000	0 517	0.086%
2	75	90	W, Service 4	0.680	-0.085	-0.022	0.000	0.001	0.000	0.680	0.113%
2	75	90	W. Service 5	-0.220	0.985	-0.037	-0.001	0.000	0.001	0.985	0.164%
2	75	90	W, Service 6	0.039	0.713	-0.035	-0.001	0.000	0.000	0.713	0.119%
2	75	90	W, Service 7	0.689	-0.849	0.013	0.001	0.001	0.000	0.849	0.142%
2	75	90	W, Service 8	0.508	0.849	-0.059	-0.001	0.001	0.000	0.849	0.141%
2	75	90	W, Service 9	0.359	-0.471	0.008	0.001	0.000	0.000	0.471	0.079%
2	75	90	W, Service 10	0.676	-0.804	0.011	0.001	0.001	-0.001	0.804	0.134%
2	75	90	W, Service 11	0.223	0.803	-0.046	-0.001	0.000	0.001	0.803	0.134%
2	75	90	W, Service 12	0.540	0.471	-0.043	-0.001	0.001	0.000	0.540	0.090%
										max	0.199%

B.1.1 Pile Group Check under Gravity Loads (ref. Report Section 5.A & 5.B)

"Existing" indicates DCR under existing building condition per Report Section 3.A & 5.A

Pile grou	р						 condition
CEBC 2016	5, 403.4	5% Thresh	bld		- v	\checkmark	ground m
					Existing	Settlement	•
Loc	Level*	Column		Node	Pu/	Pu/	norm_DCR
				ID	Pn	Pn	<u>ار ا</u>
X-DIR							
A/2	MEZZ	C2	C2 on MEZZ	2	0.382	0.340	0.892
A/3	MEZZ	C3	C3 on MEZZ	3	0.387	0.379	0.979
D/2	MEZZ	C24	C24 on MEZZ	72	0.382	0.340	0.891
D/3	MEZZ	C25	C25 on MEZZ	73	0.387	0.296	0.765
Y-DIR							
1/B	MEZZ	C11	C11 on MEZZ	21	0.385	0.210	0.544
1/C	MEZZ	C15	C15 on MEZZ	51	0.385	0.312	0.810
4/A.9	MEZZ	C9	C9 on MEZZ	15	0.370	0.258	0.698
4/C.1	MEZZ	C19	C19 on MEZZ	60	0.370	0.308	0.831
Bi-axial							
A/1	MEZZ	C1	C1 on MEZZ	1	0.260	0.429	1.648
A/4	MEZZ	C4	C4 on MEZZ	5	0.266	0.401	1.507
D/1	MEZZ	C23	C23 on MEZZ	71	0.260	0.448	1.723
D/4	MEZZ	C26	C26 on MEZZ	75	0.266	0.418	1.571
	-	•			-	-	

"Settlement" indicates DCR under existing building condition **combined** with excavation induced ground movements per Report Section 3.B & 5.B

> "norm DCR" indicates DCR comparison per Report Section 3.C.i

Load combinations per ASCE 7

Pu = 1.2D + 0.5L + 1.0 times Settement

Pn is based on recommendation from Geotech Engineer.

Notes:

* Level is for internal call ID for location of pile cap.

**norm_DCR is a normalized value as DCR_Existing/DCR_Settlement.

B.1.2 Pile Group Check under Seismic Loads (ref. Report Section 5.C.iii & 5.D.vi)

"Existing" indicates DCR under existing building condition per Report Section 3.A & 5.C

Pile group

 $\begin{array}{rrrr} C_1C_2 = & 1.0 & , \ m_max < 6 \ when \ T > 1.0 \\ J = & 2.0 & , \ High \ Seismicity \\ Existing \ foundation \ systems \ as \ force-controlled: \ 10.12.3 \\ CEBC \ 2016. \ 403.4 & 10\% \ Threshold \end{array}$

"Settlement" indicates DCR under existing building — condition **combined** with excavation induced y ground movements per Report Section 3.B & 5.D

"norm DCR" indicates — DCR comparison per

CEBC 2016, 403.4 10% Threshold					<u> </u>		Ľ		Repo	ort Section 3.	Ċ.ii
					Existing		Settlement			\searrow	_
Loc	Level*	Column		Node	Pu1/	Pu2/	Pu1/	Pu2/	horm_DCR**	norm_DCR	
				ID	Pn	Pn	Pn	Pn	case 1	case 2	1
X-DIR									1		
A/2	MEZZ	C2	C2 on MEZZ	2	0.349	0.216	0.308	0.175	0.881	0.809	1
A/3	MEZZ	C3	C3 on MEZZ	3	0.349	0.221	0.341	0.213	0.976	0.963	1
D/2	MEZZ	C24	C24 on MEZZ	72	0.349	0.216	0.307	0.175	0.881	0.808	
D/3	MEZZ	C25	C25 on MEZZ	73	0.349	0.222	0.258	0.131	0.739	0.589	
Y-DIR											
1/B	MEZZ	C11	C11 on MEZZ	21	0.357	0.214	0.181	0.038	0.508	0.179	
1/C	MEZZ	C15	C15 on MEZZ	51	0.357	0.214	0.283	0.140	0.794	0.657	
4/A.9	MEZZ	C9	C9 on MEZZ	15	0.436	0.167	0.324	0.068	0.744	0.410	1
4/C.1	MEZZ	C19	C19 on MEZZ	60	0.436	0.167	0.374	0.035	0.856	0.208	
Bi-axial											
A/1	MEZZ	C1	C1 on MEZZ	1	0.877	1.106	1.038	0.751	1.183	0.679	
A/4	MEZZ	C4	C4 on MEZZ	5	0.848	1.048	0.976	0.764	1.151	0.729	
D/1	MEZZ	C23	C23 on MEZZ	71	0.877	1.106	1.057	0.710	1.206	0.642	1
D/4	MEZZ	C26	C26 on MEZZ	75	0.848	1.050	0.993	0.730	1.171	0.696	l

Load combinations per ASCE 41, Linear Procedure.

 $Pu1 = 1.1(Q_{D} + 0.25Q_{L}) + - Q_{E}/(C_{1}C_{2}J)$

 $Pu2 = 0.9Q_D + - Q_E/(C_1C_2J)$

Notes:

* Level is for internal call ID for location of pile cap.

**norm_DCR is a normalized value as DCR_Existing/DCR_Settlement.

Per Landan analysis (See Appendix C for details) B.1.3 Pile Element Check including Excavation Induced Ground Settlement effects (Downward Cases) (ref. Report

<u>D.I.</u>		Check Includ	ung Exca	valion muud	ceu Ground Settlement enects (Downward Cases)	Per Langan analysis (See Appendix C for details)
(ref.	Report Sectio	<u>n 5.D.vi)</u>				
Pile	Capacity Check	with Settleme	ent			DCR under existing
J =	2.0	Vn =	32.0	, comp		building condition

] =	2.0		vn =	32.0 13.5	, comp , tens		K			\checkmark			$O_{CL} = C$	apacity	per Pile	1		combined with
				1010	Axial Q _{UF} at		Qe = Dema	nd per Pile	Locatio	on of Max.	$Q_{UF} = I$	Demand		apaeley			/	- execution induced
					Pile Cap		(ASCE 4	41-13)	Mc	oment	per	Pile	phi*Mn			4	<	excavation induced
Location	Node	# of Piles	direction	Pile	Pue	Pu⊧/Pile	Ň	V	d	epth	Mue	VIIE	at Pu⊧	Mn	Vn			ground movements
					kips	kip	lb-in	lb	in	ft	k-ft	kip	k-ft	k-ft	kip	017 CL	UL CL	per Report Section
A/1	1	7	East	5,6,7	2906	415.1	808,000	35,800	41	3.42	33.7	17.9	65	72	32	0.47	0.56	3.B & 5.D
	1	7	West	5,6,7	2906	415.1	808,000	35,800	41	3.42	33.7	17.9	65	72	32	0.47	0.56	
	1	7	North	All	2906	415.1	618,000	27,100	41	3.42	25.8	13.55	65	72	32	0.36	0.42	
	1	7	South	All	2906	415.1	621,000	28,400	41	3.42	25.9	14.2	65	72	32	0.36	0.44	
A/2	2	7	East	5,6,7	861	123.0	753,000	35,600	41	3.42	31.4	17.8	65	72	32	0.43	0.56	
	2	7	West	5,6,7	861	123.0	753,000	35,600	41	3.42	31.4	17.8	65	72	32	0.43	0.56	
	2	7	North	All	861	123.0	62,400	2,960	41	3.42	2.6	1.48	65	72	32	0.04	0.05	
	2	7	South	All	861	123.0	75,900	3,670	41	3.42	3.2	1.835	65	72	32	0.04	0.06	
A/3	3	7	East	5,6,7	955	136.4	753,000	35,600	41	3.42	31.4	17.8	67	74	32	0.42	0.56	
	3	7	West	5,6,7	955	136.4	753,000	35,600	41	3.42	31.4	17.8	67	74	32	0.42	0.56	
	3	7	North	All	955	136.4	72,600	3,430	41	3.42	3.0	1.715	67	74	32	0.04	0.05	
	3	7	South	All	955	136.4	76,100	3,670	41	3.42	3.2	1.835	67	74	32	0.04	0.06	
A/4	5	8	East	All	3123	390.3	1,600,000	36,300	59	4.92	66.7	18.15	68	76	32	0.88	0.57	
	5	8	West	All	3123	390.3	1,600,000	36,300	59	4.92	66.7	18.15	68	76	32	0.88	0.57	
	5	8	North	All	3123	390.3	1,780,000	37,500	65	5.42	74.2	18.75	68	76	32	0.98	0.59	
	5	8	South	All	3123	390.3	1,780,000	37,500	65	5.42	74.2	18.75	68	76	32	0.98	0.59	
A.9/4	15	10	East	All	1297	129.7	83,600	3,100	48	4.00	3.5	1.55	65	72	32	0.05	0.05	
	15	10	West	All	1297	129.7	83,600	3,100	48	4.00	3.5	1.55	65	72	32	0.05	0.05	
	15	10	North	All	1297	129.7	1,320,000	32,400	65	5.42	55.0	16.2	65	72	32	0.76	0.51	
	15	10	South	All	1297	129.7	1,320,000	32,400	65	5.42	55.0	16.2	65	72	32	0.76	0.51	
B/1	21	<u>Z</u>	East	All	507	72.4	55,000	2,600	41	3.42	2.3	1.3	50	56	32	0.04	0.04	
	21	<u> </u>	West	All	507	/2.4	76,000	3,670	41	3.42	3.2	1.835	50	56	32	0.06	0.06	
	21	<u> </u>	North	5,6,7	507	/2.4	634,000	29,900	41	3.42	26.4	14.95	50	56	32	0.48	0.47	
0.14	21	_	South	5,6,7	507	/2.4	634,000	29,900	41	3.42	26.4	14.95	50	56	32	0.48	0.4/	
C/1	51	<u> </u>	East	All	793	113.3	55,000	2,600	41	3.42	2.3	1.3	58	64	32	0.04	0.04	
	51	/	west		793	113.3	76,000	3,670	41	3.42	3.2	1.835	58	64	32	0.05	0.06	
	51	/	North	5,6,7	793	113.3	634,000	29,900	41	3.42	26.4	14.95	58	64	32	0.41	0.47	
C 1/4	51	10	South	5,6,7	/93	113.3	634,000	29,900	41	3.42	20.4	14.95	58	04 74	32	0.41	0.47	
C.1/4	60	10	East	All	1495	149.5	83,600	3,100	48	4.00	3.5	1.55	67	74	32	0.05	0.05	
	60	10	West		1495	149.5	1 220 000	3,100	40 6E	4.00	3.5	1.55	67	74	32	0.05	0.05	
	60	10	South		1495	149.5	1,320,000	32, 4 00	65	5.42 E 43	55.0	16.2	67	74	22	0.74	0.51	
D/1	71	10	Fact	567	2061	149.5	1,320,000	35,900	41	3.42	22.0	17.0	65	74	32	0.74	0.51	
0/1	71	7	Wort	5,0,7	2901	423.0	808,000	35,800	/1	3.42	22.7	17.9	65	72	22	0.47	0.50	
	71	7	North	5,0,7 All	2901	423.0	621 000	28 400	41	3.42	25.0	14.2	65	72	32	0.47	0.30	
	71	7	South		2961	423.0	618 000	20,400	41	3 42	25.9	13 55	65	72	32	0.30	0.47	
ר/2	72	7	Fast	567	860	122.0	753 000	35 600	41	3 42	31.4	17.8	65	72	32	0.30	0.12	
0/2	72	7	West	567	860	122.0	753,000	35,600	41	3 42	31.1	17.0	65	72	32	0.15	0.50	
	72	7	North	ΔΙΙ	860	122.0	75 900	3 670	41	3 42	3.2	1 835	65	72	32	0.13	0.06	
	72	7	South	All	860	122.0	74 900	3 550	41	3 42	3.1	1 775	65	72	32	0.04	0.06	
D/3	73	7	Fast	5.6.7	721	103.0	753.000	35.600	41	3.42	31.4	17.8	57	63	32	0.50	0.56	
-,-	73	, 7	West	5.6.7	721	103.0	753.000	35,600	41	3.42	31.4	17.8	57	63	32	0.50	0.56	
	73	, 7	North	All	721	103.0	76.100	3.670	41	3.42	3.2	1.835	57	63	32	0.05	0.06	
	73	7	South	All	721	103.0	72,600	3,430	41	3.42	3.0	1,715	57	63	32	0.05	0.05	
D/4	75	8	East	All	3178	397.2	695.000	31,600	41	3.42	29.0	15.8	68	76	32	0.38	0.49	
	75	8	West	All	3178	397.2	695,000	31,600	41	3.42	29.0	15.8	68	76	32	0.38	0.49	
	75	8	North	All	3178	397.2	739,000	33,100	41	3.42	30.8	16.55	68	76	32	0.41	0.52	
	75	8	South	All	3178	397.2	739,000	33,100	41	3.42	30.8	16.55	68	76	32	0.41	0.52	

* P = $1.1(D+0.25L)+E/(C_1C_2J)$

M,V is from Pile group analysis from Langan.

B.2.1 Grade Beams-Gravity (ref. Report Section 5.A & 5.B)

"Existing" indicates DCR under existing building condition per Report Section 3.A & 5.A

Grade Beams under Gravity LoadsIeff=0.5for Grade Beams

"Settlement" indicates DCR under existing building condition **combined** with excavation induced ground movements per Report Section 3.B & 5.B

Ieff= CEBC 2016	<mark>0.5</mark> , 403.4	for Grad 5% Thr	de Beams reshold		Ľ			\checkmark	exca	vation ir	nduced gro	und moven	nents per Re	port Section 3.B & 5.B
					Existing			Settleme	nt					
Loc	Level	BEAM		Section	Μ _{υ-} /	Μ _υ +/	V _U /	Μ _{υ-} /	Μ _υ +/	V _U /	norm_DCR	norm_DCR	norm_DCR	
					phi*Mn-	phi*Mn+	phi*Vn	phi*Mn-	phi*Mn+	phi*Vn	M _{U-}	M _U +	V _U \bigwedge	
A/1-A/2	GRD	B1	B1 on GRD	GB40X48	0.114	0.129	0.129	0.144	0.162	0.152	1.258	1.258	1.179	
A/2-A/3	GRD	B2	B2 on GRD	GB40X48	0.101	0.114	0.110	0.087	0.098	0.124	0.860	0.860	1.124	
A/3-A/4	GRD	B3	B3 on GRD	GB40X48	0.105	0.118	0.124	0.114	0.129	0.130	1.094	1.094	1.052	
D/1-D/2	GRD	B63	B63 on GRD	GB40X48	0.119	0.135	0.129	0.219	0.249	0.175	1.850	1.850	1.361	
D/2-D/3	GRD	B64	B64 on GRD	GB40X48	0.105	0.119	0.110	0.137	0.156	0.144	1.302	1.302	1.303	
D/3-D/4	GRD	B65	B65 on GRD	GB40X48	0.110	0.125	0.125	0.223	0.253	0.186	2.020	2.020	1.495	
1/A-1/B	GRD	B9	B9 on GRD	GB40X48	0.102	0.115	0.121	0.336	0.380	0.251	3.299	3.299	2.076	"norm DCR" indicates
1/B-1/C	GRD	B31	B31 on GRD	GB40X48	0.094	0.106	0.108	0.200	0.226	0.167	2.135	2.135	1.546	DCR comparison per
1/C-1/D	GRD	B56	B56 on GRD	GB40X48	0.102	0.115	0.121	0.285	0.322	0.208	2.795	2.795	1.714	Report Section 3.C.i
4/A-4/B	GRD	B7	B7 on GRD	GB40X48	0.151	0.172	0.157	0.319	0.363	0.256	2.117	2.117	1.634	·
4/B-4/C	GRD	B35	B35 on GRD	GB40X48	0.169	0.192	0.172	0.205	0.233	0.192	1.214	1.214	1.114	
4/C-4/D	GRD	B60	B60 on GRD	GB40X48	0.151	0.172	0.157	0.266	0.302	0.208	1.758	1.758	1.328	
				max	0.169	0.192	0.172	0.336	0.380	0.256	3.299	3.299	2.076	

B.2.2 Grade Beams-Seismic (ref. Report Section 5.C & 5.D)

"Existing" indicates DCR under existing building condition per Report Section 3.A & 5.C

Grade Beams

 $C_1C_2 =$ 1.0 , m_max < 6 when T > 1.0] = 2.0 , High Seismicity 0.9

k =

Existing foundation systems as force-controlled: 10.12.3

0.5 for Grade Beams Ieff=

"Settlement" indicates DCR under existing building condition **combined** with excavation induced ground movements per Report Section 3.B & 5.D

> "norm DCR" indicates DCR comparison per Report Section 3.C.ii

CEBC 2016	, 403.4	10% TI	hreshold			\mathcal{L}		V			_		\geq
					Existing			Settlement				\sim \vee	
Loc	Level	BEAM		Section	Mu-/	Mu+/	V _{UF} /	Mu-/	Mu+/	V _{UF} /	norm_DCR	- norm_DCR	+norm_DCR
					m*Mn-,e	m*Mn+,e	k*V _{CL}	m*Mn-,e	m*Mn+,e	k*V _{CL}	M-	M+	V
A/1-A/2	GRD	B1	B1 on GRD	GB40X48	0.277	0.392	0.339	0.292	0.413	0.348	1.054	1.054	1.026
A/2-A/3	GRD	B2	B2 on GRD	GB40X48	0.210	0.297	0.267	0.208	0.295	0.272	0.995	0.995	1.017
A/3-A/4	GRD	B3	B3 on GRD	GB40X48	0.264	0.374	0.326	0.274	0.387	0.329	1.035	1.035	1.010
D/1-D/2	GRD	B63	B63 on GRD	GB40X48	0.289	0.411	0.340	0.313	0.446	0.357	1.083	1.083	1.049
D/2-D/3	GRD	B64	B64 on GRD	GB40X48	0.217	0.309	0.266	0.217	0.308	0.277	0.999	0.999	1.042
D/3-D/4	GRD	B65	B65 on GRD	GB40X48	0.285	0.406	0.334	0.308	0.438	0.356	1.079	1.079	1.066
1/A-1/B	GRD	B9	B9 on GRD	GB40X48	0.248	0.351	0.320	0.285	0.404	0.365	1.151	1.151	1.141
1/B-1/C	GRD	B31	B31 on GRD	GB40X48	0.178	0.251	0.232	0.190	0.269	0.252	1.072	1.072	1.085
1/C-1/D	GRD	B56	B56 on GRD	GB40X48	0.248	0.351	0.320	0.280	0.396	0.351	1.130	1.130	1.094
4/A-4/B	GRD	B7	B7 on GRD	GB40X48	0.329	0.468	0.457	0.366	0.521	0.505	1.114	1.114	1.105
4/B-4/C	GRD	B35	B35 on GRD	GB40X48	0.219	0.312	0.251	0.215	0.306	0.258	0.983	0.983	1.026
4/C-4/D	GRD	B60	B60 on GRD	GB40X48	0.330	0.470	0.458	0.361	0.514	0.490	1.094	1.094	1.070
										mean	1.066	1.066	1.061
										max	1.151	1.151	1.141

C.1.1 MF Beams-Gravity (ref. Report Section 5.A & 5.B)

"Settlement" indicates DCR under existing building condition combined with excavation induced ground movements per

Report Section 3.B & B

L

CEBC 2016, 403.4:	5% Threshold	

MF Beams under Gravity Loads

"Existing" indicates DCR under existing building condition per Report Section 3.A & 5.A

				Existing	Settlement						Existing	Settlement		
Loc	Level	BEAM	Section	Mu+/	Mu+/	norm_DCR	Loc	Level	BEAM	Section	Mu+/	Mu+/	norm_DCR	
				phi*Mn+	phi*Mn+	_					phi*Mn+	phi*Mn+	-	R
				P	- - - - - - - - - -						Pro Corre	Pro Contra		'\
							VDID							
	DE	D1	W20V00	0.000	0.004	1 050		DE	DO	W20V00	0.007	0.140	1 (70	
A/1-A/2	KF 1	BI	W30X99	0.089	0.094	1.059	1/A-1/B	KF 10	B9	W30X99	0.087	0.146	1.6/8)
	1	8 BI	W30X99	0.103	0.108	1.050		18	B9	W30X99	0.111	0.184	1.654	
	1	/ B1	W30X99	0.090	0.094	1.04/		1/	B9	W30X99	0.106	0.1//	1.6/4	
	1	6 B1	W30X99	0.086	0.091	1.060		16	B9	W30X99	0.102	0.175	1./15	I
	1	5 B1	W30X99	0.082	0.088	1.074		15	B9	W30X99	0.097	0.173	1.780	"norm
	1	4 B1	W33X118	0.060	0.067	1.115		14	B9	W33X118	0.076	0.155	2.056	DOD
	1	3 B1	W33X118	0.058	0.066	1.144		13	B9	W33X118	0.073	0.158	2.167	DCR"
	1	2 B1	W33X118	0.055	0.065	1.189		12	B9	W33X118	0.069	0.157	2.290	indicates
	1	1 B1	W33X118	0.051	0.064	1.251		11	B9	W33X118	0.064	0.157	2.465	DOD
	1	0 B1	W33X118	0.052	0.063	1.199		10	B9	W33X118	0.058	0.159	2.720	DCR
		9 B1	W33X118	0.053	0.065	1.218		9	B9	W33X118	0.056	0.165	2.933	comparis
		8 B1	W36X135	0.044	0.058	1.311		8	B9	W36X135	0.045	0.162	3.557	oompuno
		7 B1	W36X135	0.044	0.064	1.454		7	B9	W36X135	0.045	0.171	3,801	on per
		6 B1	W36X135	0.043	0.071	1.666		6	B9	W36X135	0.045	0.184	4.053	Report
		5 B1	W36X135	0.042	0.078	1 875		5	B9	W36X135	0.045	0 196	4 332	Ocation
		4 B1	W36X135	0.041	0.086	2 119		4	B9	W36X135	0.045	0.209	4 664	Section
		3 B1	W36X135	0.043	0.000	2.115		3	RQ	W36Y135	0.047	0.205	4 972	3.C.i
		2 B1	W36X330	0.043	0.033	2.234		2	B0	M36X330	0.047	0.235	7.572	0.01
	ME77	Z DI D1	POV24V26	0.021	0.071	7 950		ME77	D9 P0	POV24V26	0.024	0.101	17.440	
		D1 D2	BUA24A30	0.009	0.071	1.040	1/0 1/0		D9 D21	DUA24A30	0.011	0.194	1 202	
A/Z-A/S	кг		W20X99	0.060	0.062	1.040	1/B-1/C	КГ 10	D31	W30X99	0.056	0.076	1.302	
	1	8 BZ	W30X99	0.066	0.069	1.044		18	B31	W30X99	0.059	0.071	1.205	
	1	/ B2	W30X99	0.071	0.074	1.051		1/	B31	W30X99	0.058	0.071	1.219	
	1	6 B2	W30X99	0.072	0.076	1.051		16	B31	W30X99	0.057	0.070	1.219	
	1	5 B2	W30X99	0.073	0.0//	1.054		15	B31	W30X99	0.058	0.070	1.20/	
	1	4 B2	W33X118	0.058	0.062	1.076		14	B31	W33X118	0.044	0.059	1.344	
	1	3 B2	W33X118	0.059	0.064	1.085		13	B31	W33X118	0.044	0.059	1.356	
	1	2 B2	W33X118	0.059	0.064	1.086		12	B31	W33X118	0.044	0.061	1.367	
	1	1 B2	W33X118	0.059	0.064	1.086		11	B31	W33X118	0.045	0.062	1.380	
	1	0 B2	W33X118	0.059	0.064	1.098		10	B31	W33X118	0.046	0.067	1.471	
		9 B2	W33X118	0.058	0.065	1.114		9	B31	W33X118	0.046	0.072	1.559	
		8 B2	W36X135	0.049	0.056	1.143		8	B31	W36X135	0.038	0.062	1.636	
		7 B2	W36X135	0.048	0.056	1.162		7	B31	W36X135	0.038	0.065	1.723	
		6 B2	W36X135	0.047	0.055	1.181		6	B31	W36X135	0.038	0.068	1.802	
		5 B2	W36X135	0.046	0.055	1.199		5	B31	W36X135	0.038	0.071	1.878	
		4 B2	W36X135	0.045	0.055	1.230		4	B31	W36X135	0.038	0.075	1.992	
		3 B2	W36X135	0.044	0.055	1.269		3	B31	W36X135	0.038	0.081	2.152	
		2 B2	W36X230	0.025	0.034	1.343		2	B31	W36X230	0.020	0.061	3.076	
	MEZZ	B2	BOX24X36	0.005	0.025	5.421		MEZZ	B31	BOX24X36	0.004	0.088	19.897	
A/3-A/4	RF	B3	W30X99	0.058	0.060	1.036	1/C-1/D	RF	B56	W30X99	0.087	0.142	1.631	
.,	1	8 B3	W30X99	0.078	0.078	0.997	-,, -	18	B56	W30X99	0.111	0.181	1.629	
	1	7 B3	W30X99	0.082	0.083	1.015		17	B56	W30X99	0.106	0.175	1.658	
	1	6 B3	W30X99	0.079	0.081	1 017		16	B56	W30X99	0 102	0 174	1 710	
	1	5 B3	W30X99	0.075	0.001	1.017		15	B56	W30X99	0.097	0.171	1 783	
	1	4 B3	W33X118	0.055	0.078	1.055		14	B56	W33X118	0.076	0.154	2 045	
	1	3 83	W33X110	0.055	0.050	1.035		13	B56	W33Y118	0.070	0.157	2.015	
	1	2 B3	W33X110	0.032	0.057	1 112		13	B56	W33X110	0.075	0.157	2.130	
	1	1 B3	W33X110	0.049	0.055	1.070		11	B56	W33X110	0.005	0.157	2.203	
	1	0 83	W33X110	0.043	0.055	0.075		10	B56	W33X110	0.004	0.157	2.701	
	-	0 83	W33X110	0.053	0.051	1.007		10	B56	W33X110	0.056	0.150	2.700	
			W26V12E	0.035	0.033	1.007		9	DJU	W26V12E	0.030	0.104	2.304	
		0 DJ 7 D2	W30A133	0.045	0.047	1.037		07	DOU	W26V12E	0.045	0.150	2,601	
		6 83	W36V135	0.044	0.052	1.105		6	B56	W36V135	0.045	0.107	3.031	
			W26V12E	0.042	0.039	1.595		5	DJU	W26V12E	0.045	0.170	J.92J 4 177	
		4 12	W30A135	0.041	0.003	1.599		5	DOU	W26V125	0.045	0.109	4.177	
		4 03	W30X135	0.039	0.075	1.002		4	D00	W30X135	0.045	0.201	4.4//	
		3 B3	W36X135	0.040	0.084	2.106		3	850	W36X135	0.047	0.222	4.744	
		Z B3	W36X230	0.021	0.063	2.973		۲ ۸۲	850	W36X230	0.024	0.1/2	7.210	
	MEZZ	B3	BOX24X36	0.012	0.055	4.564		MEZZ	B20	BUX24X36	0.011	0.160	14.417	
D/1-D/2	RF	B63	W30X99	0.089	0.120	1.348	4/A-4/B	RF 10	B7	W30X99	0.181	0.230	1.2/3	
	1	8 B63	W30X99	0.103	0.141	1.372		18	B7	W30X99	0.216	0.273	1.26/	
	1	/ B63	W30X99	0.090	0.127	1.409		1/	B/	W30X99	0.200	0.256	1.281	
	1	6 B63	W30X99	0.086	0.125	1.446		16	B7	W30X99	0.189	0.246	1.303	
	1	5 B63	W30X99	0.082	0.122	1.494		15	B7	W30X99	0.178	0.238	1.337	
	1	4 B63	W33X118	0.060	0.102	1.703		14	B7	W33X118	0.149	0.212	1.423	
	1	3 B63	W33X118	0.058	0.103	1.786		13	B7	W33X118	0.143	0.211	1.475	
	1	2 B63	W33X118	0.055	0.102	1.879		12	B7	W33X118	0.133	0.204	1.538	
	1	1 B63	W33X118	0.051	0.102	2.007		11	B7	W33X118	0.121	0.196	1.626	
	1	0 B63	W33X118	0.052	0.103	1.970		10	B7	W33X118	0.109	0.192	1.755	
		9 B63	W33X118	0.053	0.107	2.013		9	B7	W33X118	0.104	0.195	1.878	
		8 B63	W36X135	0.044	0.101	2.281		8	B7	W36X135	0.087	0.185	2.115	
		7 B63	W36X135	0.044	0,109	2,485		7	B7	W36X135	0,084	0,191	2,281	
		6 B63	W36X135	0.043	0.118	2.785		6	B7	W36X135	0.080	0.200	2.482	
		5 B63	W36X135	0.042	0,128	3,072		5	 B7	W36X135	0.077	0,208	2,713	
		4 B63	W36X135	0.041	0.139	3,409		4	B7	W36X135	0.072	0.217	3,008	
		3 B63	W36X135	0.043	0.156	3,610		3	B7	W36X135	0.072	0.238	3,322	
		2 B63	W36X330	0.071	0 117	5 648		2	B7	W36X330	0.040	0 179	4 436	
	• • •	- 505	**30/230	0.021	0.11/	5.040		<u> ۲</u>	57	**30/230	0.040	0.1/0	1.150	

	MEZZ	B63	BOX24X36	0.009	0.114	12.450		MEZZ	B7	BOX24X36	0.022	0.167	7.683
D/2-D/3	RF	B64	W30X99	0.060	0.060	1.000	4/B-4/C	RF	B35	W30X99	0.146	0.153	1.051
	18	B64	W30X99	0.066	0.069	1.053		18	B35	W30X99	0.122	0.130	1.062
	17	B64	W30X99	0.071	0.064	0.909		17	B35	W30X99	0.120	0.128	1.064
	16	B64	W30X99	0.072	0.065	0.900		16	B35	W30X99	0.117	0.125	1.066
	15	B64	W30X99	0.073	0.066	0.909		15	B35	W30X99	0.115	0.122	1.067
	14	B64	W33X118	0.058	0.051	0.878		14	B35	W33X118	0.092	0.102	1.103
	13	B64	W33X118	0.059	0.054	0.918		13	B35	W33X118	0.088	0.096	1.097
	12	B64	W33X118	0.059	0.055	0.934		12	B35	W33X118	0.087	0.096	1.107
	11	B64	W33X118	0.059	0.056	0.951		11	B35	W33X118	0.085	0.095	1.118
	10	B64	W33X118	0.059	0.059	0.999		10	B35	W33X118	0.081	0.093	1.141
	9	B64	W33X118	0.058	0.061	1.047		9	B35	W33X118	0.082	0.097	1.184
	8	B64	W36X135	0.049	0.052	1.058		8	B35	W36X135	0.067	0.079	1.174
	7	B64	W36X135	0.048	0.054	1.114		7	B35	W36X135	0.066	0.082	1.239
	6	B64	W36X135	0.047	0.055	1.169		6	B35	W36X135	0.066	0.084	1.260
	5	B64	W36X135	0.046	0.056	1.225		5	B35	W36X135	0.067	0.086	1.279
	4	B64	W36X135	0.045	0.058	1.303		4	B35	W36X135	0.068	0.088	1.309
	3	B64	W36X135	0.044	0.063	1.439		3	B35	W36X135	0.068	0.092	1.353
	2	B64	W36X230	0.025	0.037	1.453		2	B35	W36X230	0.038	0.057	1.503
	MEZZ	B64	BOX24X36	0.005	0.050	11.069		MEZZ	B35	BOX24X36	0.026	0.051	1.972
D/3-D/4	RF	B65	W30X99	0.058	0.080	1.377	4/C-4/D	RF	B60	W30X99	0.181	0.214	1.184
	18	B65	W30X99	0.078	0.106	1.357		18	B60	W30X99	0.216	0.258	1.197
	17	B65	W30X99	0.082	0.111	1.349		17	B60	W30X99	0.200	0.243	1.217
	16	B65	W30X99	0.079	0.109	1.370		16	B60	W30X99	0.189	0.235	1.243
	15	B65	W30X99	0.076	0.107	1.412		15	B60	W30X99	0.178	0.227	1.278
	14	B65	W33X118	0.055	0.088	1.619		14	B60	W33X118	0.149	0.201	1.347
	13	B65	W33X118	0.052	0.089	1.703		13	B60	W33X118	0.143	0.200	1.393
	12	B65	W33X118	0.049	0.089	1.792		12	B60	W33X118	0.133	0.193	1.455
	11	B65	W33X118	0.049	0.088	1.781		11	B60	W33X118	0.121	0.186	1.541
	10	B65	W33X118	0.053	0.089	1.685		10	B60	W33X118	0.109	0.181	1.654
	9	B65	W33X118	0.053	0.093	1.758		9	B60	W33X118	0.104	0.182	1.759
	8	B65	W36X135	0.045	0.089	1.966		8	B60	W36X135	0.087	0.171	1.954
	7	B65	W36X135	0.044	0.097	2.203		7	B60	W36X135	0.084	0.176	2.099
	6	B65	W36X135	0.042	0.107	2.538		6	B60	W36X135	0.080	0.183	2.281
	5	B65	W36X135	0.041	0.117	2.864		5	B60	W36X135	0.077	0.191	2.491
	4	B65	W36X135	0.039	0.128	3.275		4	B60	W36X135	0.072	0.199	2.754
	3	B65	W36X135	0.040	0.145	3.648		3	B60	W36X135	0.072	0.217	3.031
	2	B65	W36X230	0.021	0.115	5.409		2	B60	W36X230	0.040	0.162	4.039
	MEZZ	B65	BOX24X36	0.012	0.114	9.265		MEZZ	B60	BOX24X36	0.022	0.149	6.830
			max	0.103	0.156	12.450				max	0.216	0.273	19.897
			count	0	0	93				count	0	0	114

C.1.2 MF ref. Rep	Beam	s-Seisn ction 5.0	<u>nic</u> C & 5.D)		_ "Exis cond	ting" indica ition per R	ates DCF eport Se	tion 3	r existi A & 5	ng buildin .C	g		
ME Boom	s under	Soismic	Loads			"Settleme	ent" indic	ates D	CR un	der existii	ng build	ing con	dition cc
$C_1C_2 =$	1.0	, m max	< 6 when T :	> 1.0		with exca	vation in	duced	groun	d moveme	ents per	Repor	t Section
J =	2.0	, High Se	eismicity	-			"norm	DCR	" indic:	ates			
Existing fo	oundation	systems	as force-contro	olled: 10.12	.3			compa	rison r	her			
CEBC 2010	6, 403.4	10% 10	resnola	Existing	Settleme	at V	Renor	t Sect	ion 3 (Fristing	Settleme	nt
	Level	RFΔM	Section					Level	RFAM	Section			norm DCI
LUC		DERT		m_*Ocr	m_*Ocr	hom_ber	Loc		DER		m_*Ocr	m_*Ocr	norm_bei
											e ACE	e ACE	
X-DIR				m _e *Q _{CE}	m _e *Q _{CE}	norm_DCR	Y-DIR						
A/1-A/2	RF	B1	W30X99	0.077	0.078	1.008	1/A-1/B	RF	B9	W30X99	0.060	0.068	1.133
	18	B1	W30X99	0.130	0.130	1.005		18	B9	W30X99	0.106	0.116	1.093
	17	BI B1	W30X99	0.181	0.182	1.003		17	B9 B0	W30X99	0.154	0.103	1.062
	15	B1	W30X99	0.248	0.249	1.003		15	B9	W30X99	0.215	0.205	1.048
	14	B1	W33X118	0.236	0.237	1.004		14	B9	W33X118	0.204	0.214	1.053
	13	B1	W33X118	0.239	0.240	1.005		13	B9	W33X118	0.206	0.217	1.056
	12	B1 P1	W33X118	0.255	0.25/	1.006		12	B0 B0	W33X118	0.220	0.232	1.055
	10	B1	W33X118	0.271	0.273	1.008		10	B9	W33X118 W33X118	0.233	0.240	1.054
	9	B1	W33X118	0.274	0.276	1.009		9	B9	W33X118	0.235	0.249	1.063
	8	B1	W36X135	0.254	0.257	1.012		8	B9	W36X135	0.217	0.232	1.073
	7	B1	W36X135	0.255	0.258	1.014		7	B9	W36X135	0.217	0.234	1.079
	5	B1	W36X135	0.204	0.209	1.017		5	B9 B9	W36X135	0.220	0.244	1.084
	4	B1	W36X135	0.283	0.289	1.022		4	B9	W36X135	0.241	0.264	1.093
	3	B1	W36X135	0.293	0.301	1.026		3	B9	W36X135	0.250	0.275	1.102
	2	B1	W36X230	0.257	0.264	1.027		2	B9	W36X230	0.219	0.241	1.098
/2-4/3	RF	B1 B2	W30X99	0.679	0.705	1.037	1/B-1/C	RF	в9 В31	W30X99	0.592	0.058	0.998
2795	18	B2	W30X99	0.128	0.129	1.003	1/0 1/0	18	B31	W30X99	0.116	0.117	1.010
	17	B2	W30X99	0.157	0.157	1.003		17	B31	W30X99	0.140	0.141	1.008
	16	B2	W30X99	0.189	0.190	1.002		16	B31	W30X99	0.168	0.170	1.008
	15 14	B2 B2	W30X99 W33X118	0.209	0.209	1.002		15 14	B31 B31	W30X99 W33X118	0.186	0.187	1.009
	13	B2	W33X118 W33X118	0.201	0.201	1.003		13	B31	W33X118 W33X118	0.203	0.205	1.000
	12	B2	W33X118	0.234	0.235	1.003		12	B31	W33X118	0.209	0.211	1.011
	11	B2	W33X118	0.241	0.242	1.003		11	B31	W33X118	0.215	0.217	1.011
	10	B2	W33X118	0.262	0.263	1.003		10	B31	W33X118	0.233	0.235	1.013
	9	BZ B2	W33X118 W36X135	0.276	0.277	1.003		9	B31 B31	W33X118 W36X135	0.243	0.247	1.014
	7	B2	W36X135	0.258	0.259	1.004		7	B31	W36X135	0.227	0.231	1.016
	6	B2	W36X135	0.264	0.265	1.004		6	B31	W36X135	0.232	0.236	1.018
	5	B2	W36X135	0.272	0.274	1.005		5	B31	W36X135	0.237	0.242	1.019
	4	BZ B2	W36X135 W36X135	0.281	0.283	1.005		4	B31 B31	W36X135 W36X135	0.244	0.249	1.021
	2	B2	W36X230	0.243	0.244	1.005		2	B31	W36X230	0.209	0.215	1.030
	MEZZ	B2	BOX24X36	0.630	0.639	1.015		MEZZ	B31	BOX24X36	0.546	0.581	1.064
/3-A/4	RF	B3	W30X99	0.075	0.075	0.997	1/C-1/D	RF	B56	W30X99	0.060	0.068	1.123
	18 17	B3 B3	W30X99	0.129	0.129	1 000		18 17	B56	W30X99	0.106	0.116	1.089
	16	B3	W30X99	0.226	0.226	1.000		16	B56	W30X99	0.193	0.203	1.051
	15	B3	W30X99	0.250	0.250	1.001		15	B56	W30X99	0.215	0.225	1.048
	14 12	B3 82	W33X118	0.238	0.239	1.002		14 12	856 856	W33X118	0.204	0.214	1.053
	12	B3	W33X118	0.257	0.242	1.002		12	B56	W33X118	0.220	0.232	1.055
	11	B3	W33X118	0.273	0.274	1.003		11	B56	W33X118	0.233	0.246	1.054
	10	B3	W33X118	0.278	0.280	1.004		10	B56	W33X118	0.237	0.251	1.057
	у У	83 83	W33X118 W36X125	0.276	0.277 0.259	1.006		9 &	856 856	W33X118 W26Y125	0.235	0.249 0.222	1.062
	7	B3	W36X135	0.256	0.258	1.010		7	B56	W36X135	0.217	0.232	1.076
	6	B3	W36X135	0.266	0.269	1.012		6	B56	W36X135	0.226	0.244	1.080
	5	B3	W36X135	0.277	0.281	1.015		5	B56	W36X135	0.235	0.255	1.084
	4	B3 82	W36X135	0.284	0.289	1.017		4 2	856 856	W36X135	0.241	0.263	1.088
	2 2	B3	W36X230	0.254	0.263	1.020		2	B56	W36X230	0.250	0.274	1.090
	MEZZ	B3	BOX24X36	0.684	0.702	1.026		MEZZ	B56	BOX24X36	0.592	0.653	1.103
/1-D/2	RF	B63	W30X99	0.077	0.081	1.054	4/A-4/B	RF	B7	W30X99	0.094	0.100	1.071
	18	B63	W30X99	0.130	0.135	1.039		18	B7	W30X99	0.157	0.165	1.049
	17 16	воз В63	W30X99 W30X99	0.181	0.186	1.027		1/ 16	в/ В7	W30X99 W30X99	0.218	0.226	1.034
	15	B63	W30X99	0.248	0.254	1.022		15	B7	W30X99	0.292	0.300	1.028
	14	B63	W33X118	0.236	0.242	1.024		14	B7	W33X118	0.269	0.278	1.032
	13	B63	W33X118	0.239	0.245	1.026		13	B7	W33X118	0.269	0.278	1.035
	12	びひづ B63	W33X118	0.255	0.262	1.026		12	В/ В7	W33X118	0.287	0.29/	1.034

	10	B63	W33X118	0.276	0.284	1.027		10	B7	W33X118	0.310	0.321	1.036
	9	B63	W33X118	0.274	0.282	1.030		9	B7	W33X118	0.306	0.318	1.040
	8	B63	W36X135	0.254	0.263	1.035		8	B7	W36X135	0.280	0.293	1.047
	7	B63	W36X135	0.255	0.264	1.038		7	B7	W36X135	0.281	0.296	1.052
	6	B63	W36X135	0.264	0.275	1.041		6	B7	W36X135	0.294	0.310	1.055
	5	B63	W36X135	0.275	0.288	1.044		5	B7	W36X135	0.308	0.326	1.058
	4	B63	W36X135	0.283	0.297	1.047		4	B7	W36X135	0.318	0.338	1.062
	3	B63	W36X135	0.293	0.309	1.053		3	B7	W36X135	0.330	0.353	1.069
	2	B63	W36X230	0.257	0.270	1.052		2	B7	W36X230	0.289	0.308	1.065
	MEZZ	B63	BOX24X36	0.680	0.723	1.063		MEZZ	B7	BOX24X36	0.778	0.837	1.075
D/2-D/3	RF	B64	W30X99	0.074	0.075	1.008	4/B-4/C	RF	B35	W30X99	0.129	0.129	0.997
-//-	18	B64	W30X99	0.128	0.130	1.010	.,, _	18	B35	W30X99	0.181	0.182	1.003
	17	B64	W30X99	0.157	0.157	1.001		17	B35	W30X99	0.209	0.209	1.003
	16	B64	W30X99	0.189	0.189	1.001		16	B35	W30X99	0.241	0.241	1.003
	15	B64	W30X99	0.209	0.209	1.001		15	B35	W30X99	0.260	0.261	1.003
	14	B64	W33X118	0.201	0.201	1.001		14	B35	W33X118	0.250	0.251	1.004
	13	B64	W33X118	0.227	0.228	1.002		13	B35	W33X118	0.276	0.277	1.005
	12	B64	W33X118	0.234	0.235	1.002		12	B35	W33X118	0.282	0.283	1.005
	11	B64	W33X118	0.241	0.242	1.003		11	B35	W33X118	0.287	0.288	1.005
	10	B64	W33X118	0.262	0.263	1.004		10	B35	W33X118	0.307	0.308	1.006
	9	B64	W33X118	0.276	0.277	1.005		9	B35	W33X118	0.318	0.320	1.006
	8	B64	W36X135	0.251	0.252	1.005		8	B35	W36X135	0.293	0.295	1.006
	7	B64	W36X135	0.258	0.259	1.006		7	B35	W36X135	0.297	0.299	1.007
	6	B64	W36X135	0.264	0.266	1.007		6	B35	W36X135	0.300	0.303	1.008
	5	B64	W36X135	0.272	0.274	1.007		5	B35	W36X135	0.305	0.307	1.008
	4	B64	W36X135	0.281	0.284	1.008		4	B35	W36X135	0.309	0.312	1.009
	3	B64	W36X135	0.292	0.295	1.010	008 010 006 030 M	3	B35	W36X135	0.314	0.318	1.010
	2	B64	W36X230	0.243	0.244	1.006		2	B35	W36X230	0.268	0.270	1.008
	MEZZ	B64	BOX24X36	0.630	0.650	1.030		MEZZ	B35	BOX24X36	0.683	0.695	1.017
D/3-D/4	RF	B65	W30X99	0.075	0.078	1.039	4/C-4/D	RF	B60	W30X99	0.094	0.098	1.047
270 27 .	18	B65	W30X99	0.129	0.133	1.029	., e ., e	18	B60	W30X99	0.157	0.163	1.036
	17	B65	W30X99	0.183	0.187	1.021		17	B60	W30X99	0.218	0.224	1.026
	16	B65	W30X99	0.226	0.230	1.017		16	B60	W30X99	0.267	0.273	1.023
	15	B65	W30X99	0.250	0.254	1.017		15	B60	W30X99	0.292	0.299	1.023
	14	B65	W33X118	0.238	0.243	1.019		14	B60	W33X118	0.269	0.276	1.026
	13	B65	W33X118	0.241	0.246	1.021		13	B60	W33X118	0.269	0.277	1.029
	12	B65	W33X118	0.257	0.263	1.021		12	B60	W33X118	0.287	0.295	1.029
	11	B65	W33X118	0.273	0.279	1.021		11	B60	W33X118	0.305	0.314	1.029
	10	B65	W33X118	0.279	0.285	1.023		10	B60	W33X118	0.310	0.320	1.031
	9	B65	W33X118	0.276	0.283	1.026		9	B60	W33X118	0.306	0.316	1.035
	8	B65	W36X135	0.256	0.264	1.030		8	B60	W36X135	0.280	0.291	1.040
	7	B65	W36X135	0.256	0.265	1.034		7	B60	W36X135	0.281	0.293	1.044
	6	B65	W36X135	0.266	0.276	1.037		6	B60	W36X135	0.294	0.308	1.048
	5	B65	W36X135	0.277	0.288	1.040		5	B60	W36X135	0.308	0.323	1.051
	4	B65	W36X135	0.284	0.297	1.044		4	B60	W36X135	0.318	0.336	1.054
	3	B65	W36X135	0.294	0.309	1.049		3	B60	W36X135	0.330	0,350	1,060
	2	B65	W36X230	0.258	0.271	1.050		2	B60	W36X230	0.289	0.306	1.058
	MEZZ	B65	BOX24X36	0.683	0.722	1.058		MEZZ	B60	BOX24X36	0.778	0.830	1.067
			max	0.684	0.723	1.063				max	0.778	0.837	1.133
			count	0	0	0				count	0	0	5
				>1.0	>1.0	>1.1					>1.0	>1.0	>1.1

C.2.1 MF Columns-Gravity (ref. Report Section 5.A & 5.B)

MF Columns under Gravity Loads CEBC 2016, 5% Threshold

 $\boldsymbol{\nu}$

--- "Existing" indicates DCR under existing building condition per Report Section 3.A & 5.A

"Settlement" indicates DCR under existing building condition **combined** with excavation induced ground movements per Report Section 3.B & 5.B

- "norm DCR" indicates DCR comparison per Report Section 3.C.i

				Existing	Settlement						Existing Settlement							Existing	t	
Loc	Level	BEAM	Section	M _U +/ phi*Mn+	M _U +/ phi*Mn+	norm_DCR	Loc	Level	BEAM	Section	M _U +/ phi*Mn+	M _U +/ phi*Mn+	norm_DCR	Loc	Level	BEAM	Section	M _U +/ phi*Mn+	M _U +/ phi*Mn+	norm_DCR
X-D	(R						Y-DI	R						Bi-a	kial					
A/2	RF	C2	*W14X159	0.031	0.031	1.027	1/B	RF	C11	*W14X159	0.031	0.045	1.458	A/1	RF	C1	*BOX24X24X7/8	0.058	0.076	1.306
	18	C2	*W14X159	0.036	0.037	1.016		18	C11	*W14X159	0.037	0.050	1.337		18	C1	*BOX24X24X7/8	0.048	0.063	1.309
	17	C2	*W14X159	0.047	0.047	1.010		17	C11	*W14X159	0.048	0.057	1.187		17	C1	*BOX24X24X7/8	0.053	0.070	1.315
	16	C2	*W14X176	0.053	0.053	1.007		16	C11	*W14X176	0.054	0.061	1.115		16	C1	*BOX24X24X7/8	0.055	0.072	1.312
	15	C2	*W14X176	0.062	0.062	1.001		15	C11	*W14X176	0.063	0.068	1.091		15	C1	*BOX24X24X7/8	0.059	0.083	1.396
	14	C2	*W14X257	0.051	0.051	1.001		14	C11	*W14X257	0.051	0.059	1.147		14	C1	*BOX24X24X7/8	0.063	0.091	1.437
	13	C2	*W14X257	0.057	0.057	0.997		13	C11	*W14X257	0.058	0.063	1.082		13	C1	*BOX24X24X7/8	0.066	0.096	1.456
	12	C2	*W14X257	0.065	0.065	0.995		12	C11	*W14X257	0.066	0.068	1.034		12	C1	*BOX24X24X7/8	0.069	0.102	1.484
	11	C2	*W14X257	0.071	0.070	0.989		11	C11	*W14X257	0.072	0.071	0.980		11	C1	*BOX24X24X7/8	0.070	0.107	1.526
	10	C2	*W14X342	0.060	0.059	0.988		10	C11	*W14X342	0.061	0.060	0.999		10	C1	*BOX24X24X7/8	0.074	0.114	1.549
	9	C2	*W14X342	0.065	0.064	0.982		9	C11	*W14X342	0.066	0.066	1.006		9	C1	*BOX24X24X7/8	0.077	0.129	1.672
	8	C2	*W14X398	0.061	0.060	0.980		8	C11	*W14X398	0.062	0.064	1.037		8	C1	*BOX24X24X7/8	0.082	0.142	1.744
	7	C2	*W14X398	0.066	0.064	0.973		7	C11	*W14X398	0.067	0.067	1.007		7	C1	*BOX24X24X7/8	0.085	0.151	1.776
	6	C2	*W14X455	0.062	0.060	0.969		6	C11	*W14X455	0.063	0.065	1.026		6	C1	*BOX24X24X1	0.080	0.148	1.850
	5	C2	*W14X455	0.066	0.064	0.963		5	C11	*W14X455	0.067	0.066	0.991		5	C1	*BOX24X24X1	0.083	0.158	1.903
	4	C2	*W14X550	0.058	0.057	0.978		4	C11	*W14X550	0.060	0.060	0.994		4	C1	*BOX24X24X1.125	0.078	0.149	1.922
	3	C2	*W14X550	0.063	0.065	1.031		3	C11	*W14X550	0.062	0.070	1.137		3	C1	*BOX24X24X1.125	0.092	0.210	2.291
	2	C2	**BOX26X28	0.081	0.081	1.006		2	C11	**BOX26X28	0.084	0.087	1.033		2	C1	*BOX24X24X1.5	0.065	0.163	2.529
	MEZZ	C2	**BOX26X28	0.104	0.134	1.285		MEZZ	C11	**BOX26X28	0.104	0.111	1.066		MEZZ	C1	*BOX24X24X1.5	0.094	0.284	3.030
A/3	RF	C3	*W14X159	0.028	0.030	1.038	1/C	RF	C15	*W14X159	0.031	0.060	1.913	A/4	RF	C4	*BOX24X24X7/8	0.070	0.083	1.184
	18	C3	*W14X159	0.036	0.037	1.029		18	C15	*W14X159	0.037	0.065	1.727		18	C4	*BOX24X24X7/8	0.065	0.077	1.183
	17	C3	*W14X159	0.047	0.048	1.025		17	C15	*W14X159	0.048	0.074	1.533		17	C4	*BOX24X24X7/8	0.070	0.083	1.186
	16	C3	*W14X176	0.054	0.055	1.023		16	C15	*W14X176	0.054	0.078	1.444		16	C4	*BOX24X24X7/8	0.072	0.085	1.186
	15	C3	*W14X176	0.062	0.064	1.018		15	C15	*W14X176	0.063	0.089	1.419		15	C4	*BOX24X24X7/8	0.080	0.098	1.224
	14	C3	*W14X257	0.051	0.052	1.021		14	C15	*W14X257	0.051	0.078	1.525		14	C4	*BOX24X24X7/8	0.085	0.107	1.260
	13	C3	*W14X257	0.058	0.059	1.019		13	C15	*W14X257	0.058	0.084	1.440		13	C4	*BOX24X24X7/8	0.087	0.112	1.277
	12	C3	*W14X257	0.066	0.067	1.018		12	C15	*W14X257	0.066	0.092	1.387		12	C4	*BOX24X24X7/8	0.089	0.116	1.299
	11	C3	*W14X257	0.073	0.074	1.014		11	C15	*W14X257	0.072	0.095	1.317		11	C4	*BOX24X24X7/8	0.090	0.120	1.328
	10	C3	*W14X342	0.061	0.062	1.015		10	C15	*W14X342	0.061	0.082	1.363		10	C4	*BOX24X24X7/8	0.093	0.126	1.356
	9	C3	*W14X342	0.066	0.067	1.013		9	C15	*W14X342	0.066	0.091	1.384		9	C4	*BOX24X24X7/8	0.098	0.141	1.434
	8	C3	*W14X398	0.062	0.065	1.038		8	C15	*W14X398	0.062	0.090	1.442		8	C4	*BOX24X24X7/8	0.103	0.154	1.496
	7	C3	*W14X398	0.067	0.071	1.052		7	C15	*W14X398	0.067	0.093	1.401		7	C4	*BOX24X24X7/8	0.105	0.161	1.530
	6	C3	*W14X455	0.063	0.068	1.076		6	C15	*W14X455	0.063	0.091	1.442		6	C4	*BOX24X24X1	0.098	0.157	1.597
	5	C3	*W14X455	0.067	0.073	1.080		5	C15	*W14X455	0.067	0.094	1.399		5	C4	*BOX24X24X1	0.100	0.165	1.646
	4	C3	*W14X550	0.059	0.066	1.113		4	C15	*W14X550	0.060	0.085	1.412		4	C4	*BOX24X24X1.125	0.093	0.157	1.684
	3	C3	*W14X550	0.064	0.072	1.135		3	C15	*W14X550	0.062	0.101	1.63/		3	C4	*BOX24X24X1.125	0.106	0.208	1.957
	2	C3	**BOX26X28	0.082	0.103	1.244		2	C15	**BOX26X28	0.084	0.133	1.581		2	C4	*BOX24X24X1.5	0.078	0.171	2.191
D /0	MEZZ	3	**BOX26X28	0.105	0.138	1.315	4.05	MEZZ	C15	**BOX26X28	0.104	0.1//	1.698	5.4	MEZZ	C4	*BOX24X24X1.5	0.096	0.252	2.615
D/2	RF 10	C24	*W14X159	0.031	0.047	1.525	4/B	RF 10	(9	*W14X159	0.107	0.122	1.145	D/1	RF 10	C23	*BOX24X24X7/8	0.058	0.082	1.399
	18	C24	*W14X159	0.036	0.043	1.198		18	(9	*W14X159	0.108	0.119	1.109		18	C23	*BOX24X24X7/8	0.048	0.068	1.410
	1/	C24	*W14X159	0.047	0.052	1.112		1/	(9	*W14X159	0.115	0.125	1.081		1/	C23	*BOX24X24X7/8	0.053	0.076	1.42/
	16	C24	*W14X176	0.053	0.057	1.076		16	(9	*W14X176	0.116	0.124	1.069		16	C23	*BOX24X24X//8	0.055	0.078	1.424
	15	C24	*W14X176	0.062	0.067	1.095		15	C9	*W14X176	0.125	0.132	1.058		15	C23	*BOX24X24X//8	0.059	0.092	1.551
	14	C24	*W14X257	0.051	0.058	1.14/		14	(9	*W14X257	0.102	0.111	1.081		14	C23	*BOX24X24X7/8	0.063	0.100	1.58/
	13	C24	*W14X25/	0.05/	0.065	1.12/		13	(9	*W14X25/	0.10/	0.114	1.063		13	C23	*BUX24X24X//8	0.066	0.10/	1.609
	12	C24	*W14X25/	0.065	0.072	1.111		12	(9	*W14X25/	0.114	0.120	1.053		12	C23	*BUX24X24X//8	0.069	0.113	1.640
	11	C24	*W14X25/	0.0/1	0.078	1.094		11	0	*W14X25/	0.110	0.122	1.030		11	C23	*DUX24X24X//8	0.070	0.120	1.702
	10	C24	*10/14/242	0.060	0.00/	1.122		10	0	*10/14/242	0.097	0.102	1.050		10	C23	DUX24X24X//8	0.074	0.120	1./15
	9	C24	WV14X342	0.065	0.075	1.151		9	09	WV14X342	0.103	0.109	1.053		9	C23	"DUX24X24X//8	0.077	0.144	1.867
	8	C24	^W14X398	0.061	0.073	1.193		8	(9	^W14X398	0.09/	0.104	1.0/6		8	C23	*BOX24X24X//8	0.082	0.158	1.933
	7	C24	*W14X398	0.066	0.078	1.191		7	C9	*W14X398	0.101	0.107	1.056		7	C23	*BOX24X24X7/8	0.085	0.167	1.968
	6	C24	*W14X455	0.062	0.076	1.225		6	C9	*W14X455	0.094	0.101	1.073		6	C23	*BOX24X24X1	0.080	0.164	2.042

	5	C24	*W14X455	0.066	0.080	1.214		5	C9	*W14X455	0.098	0.103	1.048		5 C23	*BOX24X24X1	0.083	0.175	2.101
	4	C24	*W14X550	0.058	0.072	1.241		4	C9	*W14X550	0.086	0.092	1.062		4 C23	*BOX24X24X1.125	0.078	0.164	2.117
	3	C24	*W14X550	0.063	0.086	1.368		3	C9	*W14X550	0.093	0.105	1.131		3 C23	*BOX24X24X1.125	0.092	0.228	2.494
	2	C24	**BOX26X28	0.081	0.109	1.348		2	C9	**BOX26X28	0.113	0.125	1.108		2 C23	*BOX24X24X1.5	0.064	0.184	2.848
	MEZZ	C24	**BOX26X28	0.104	0.148	1.420		MEZZ	C9	**BOX26X28	0.242	0.163	0.672	ME	ZZ C23	*BOX24X24X1.5	0.094	0.295	3.149
D/3	RF	C25	*W14X159	0.028	0.029	1.008	4/C	RF	C19	*W14X159	0.107	0.121	1.133	D/4 RF	C26	*BOX24X24X7/8	0.070	0.085	1.204
	18	C25	*W14X159	0.036	0.035	0.975		18	C19	*W14X159	0.108	0.124	1.151		18 C26	*BOX24X24X7/8	0.065	0.079	1.210
	17	C25	*W14X159	0.047	0.045	0.965		17	C19	*W14X159	0.115	0.132	1.141		17 C26	*BOX24X24X7/8	0.070	0.086	1.223
	16	C25	*W14X176	0.054	0.051	0.959		16	C19	*W14X176	0.116	0.132	1.139		16 C26	*BOX24X24X7/8	0.072	0.088	1.225
	15	C25	*W14X176	0.062	0.059	0.954		15	C19	*W14X176	0.125	0.142	1.140		15 C26	*BOX24X24X7/8	0.080	0.103	1.289
	14	C25	*W14X257	0.051	0.049	0.948		14	C19	*W14X257	0.102	0.120	1.169		14 C26	*BOX24X24X7/8	0.085	0.112	1.317
	13	C25	*W14X257	0.058	0.055	0.936		13	C19	*W14X257	0.107	0.125	1.160		13 C26	*BOX24X24X7/8	0.087	0.117	1.341
	12	C25	*W14X257	0.066	0.062	0.930		12	C19	*W14X257	0.114	0.133	1.161		12 C26	*BOX24X24X7/8	0.089	0.122	1.370
	11	C25	*W14X257	0.073	0.067	0.924		11	C19	*W14X257	0.118	0.135	1.147		11 C26	*BOX24X24X7/8	0.090	0.128	1.417
	10	C25	*W14X342	0.061	0.056	0.918		10	C19	*W14X342	0.097	0.114	1.171		10 C26	*BOX24X24X7/8	0.093	0.134	1.439
	9	C25	*W14X342	0.066	0.062	0.935		9	C19	*W14X342	0.103	0.123	1.184		9 C26	*BOX24X24X7/8	0.098	0.151	1.539
	8	C25	*W14X398	0.062	0.060	0.957		8	C19	*W14X398	0.097	0.117	1.213		8 C26	*BOX24X24X7/8	0.103	0.164	1.600
	7	C25	*W14X398	0.067	0.064	0.961		7	C19	*W14X398	0.101	0.121	1.198		7 C26	*BOX24X24X7/8	0.105	0.172	1.642
	6	C25	*W14X455	0.063	0.062	0.981		6	C19	*W14X455	0.094	0.116	1.223		6 C26	*BOX24X24X1	0.098	0.168	1.713
	5	C25	*W14X455	0.067	0.066	0.973		5	C19	*W14X455	0.098	0.118	1.204		5 C26	*BOX24X24X1	0.100	0.178	1.776
	4	C25	*W14X550	0.059	0.059	1.001		4	C19	*W14X550	0.086	0.105	1.220		4 C26	*BOX24X24X1.125	0.093	0.168	1.808
	3	C25	*W14X550	0.064	0.066	1.027		3	C19	*W14X550	0.093	0.121	1.312		3 C26	*BOX24X24X1.125	0.106	0.225	2.124
	2	C25	**BOX26X28	0.083	0.092	1.115		2	C19	**BOX26X28	0.113	0.150	1.335		2 C26	*BOX24X24X1.5	0.078	0.189	2.418
	MEZZ	C25	**BOX26X28	0.105	0.117	1.120		MEZZ	C19	**BOX26X28	0.242	0.199	0.824	ME	ZZ C26	*BOX24X24X1.5	0.097	0.280	2.887
			max	0.105	0.148	1.525				max	0.242	0.199	1.913			max	0.106	0.295	3.149
			count	0	0	29				count	0	0	62			count	0	0	76
				>1.0	>1.0	>1.05					>1.0	>1.0	>1.05				>1.0	>1.0	>1.05

Coll. Report Section 5.C & 5.D. Coll. Number of the report Section 3.C & 5.D. Product section 3.C & 5.D. "Settlement" indicates DCR comparison per Report Section 3.B & 5.D. Image: Section 3.C & 5.D. "norm DCR" indicates DCR comparison per Report Section 3.D. 3.D. Image: Section 3.D. & 5.D. "norm DCR" indicates DCR comparison per Report Section 3.D. 3.D. Image: Section 3.D. & 5.D. "norm DCR" indicates DCR comparison per Report Section 3.C.I. Image: Section 3.D. & 5.D. "norm DCR" indicates DCR comparison per Report Section 3.C.I. Image: Section 3.D. & 5.D. "norm DCR" indicates DCR comparison per Report Section 3.C.I. Image: Section 3.D. & 5.D. "norm DCR" indicates DCR comparison per Report Section 3.C.I. Image: Section 3.D. & 5.D. "norm DCR" indicates DCR comparison per Report Section 3.C.I. Image: Section 3.D. & 5.D. "norm DCR" indicates DCR comparison per Report Section 3.C.I. Image: Section 3.D. & 5.D. "norm DCR" indicates DCR comparison per Report Section 3.C.I. Image: Section 3.D. & 5.D. "norm DCR" indicates DCR comparison per Report Section 3.C.I. Image: Section 3.D. & 5.D. "norm DCR" indicates DCR comparison per Report Section 3.C.I. Image: Section 3.D. & 5.D. "norm DCR" indicates DCR comparison per Report Section 3.C.I. Image: Section 3.D. & 5.D.	C.2	2 MF (Colum	ıns - Seismi	ic		_ "Existir	ng" in	dicates		under ex	isting b	uilding								
$ \begin{array}{c} \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	(ref	Repo	rt Sec	tion 5.C & 5	5.D)	/	conditi	on pe	гкерс	on Sec	ction 3.A d	x 5.C									
PTCommunication Section	1.01	Ttope			<u>, , , , , , , , , , , , , , , , , , , </u>	/		'Settle	ement'	' indica	ates DCR	under e	existing	a buildina (condit	ion co	ombin	ned			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MF C	Columns	under S	eismic Loads		1		with e	xcava	tion in	duced aro	und mo	vemer	nts per Re	port S	ection	13B	85D			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C_1C_2	1.0	, m_max	x < 6 when T > 1	1.0				nouvu		aacca gio		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ponte	00000	10.0	a 0.D			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$] =	2.0	, High S	eismicity			/		"no	rm D	CD" indiac		Doom	norioon n		ort C	oction	201			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CEBC	2016, 40	3.4:	10% Threshold	V	V			— no	ים חח		lies DC	R COM	panson pe	ыкер	5011 5	ection	3.0.11			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Fxist	Settlemer	nt K					Fxist	Settlemen	t					Fxist	Settlemen	t
D D <thd< th=""> D D D</thd<>	Loc	Level	BEAM	Section	Our/				Level	BEAM	Section	Oup/	Our/			Level	BEAM	Section	0up/	Our/	
L L <thl< th=""> L <thl< th=""> <thl< th=""></thl<></thl<></thl<>	LUC		DLAN		m.*0cc	m.*Ocr	nonn_ber	LUC		DLAN		m.*0cr	m.*0~	nonn_ber	LUC		DLAN		m.*0~	m.*0cr	norm_DCK
LOB VID LOB LOB <thlob< th=""> <thlob< th=""> <thlob< th=""></thlob<></thlob<></thlob<>					THE YULE	The CLE	<u> </u>					THE YULE	The CLE	<u> </u>					The ALE	THE YULE	
N2 PI C2 ************************************	X-DI	R						Y-DI	R						Bi-a	xial					
IB C2 ************************************	A/2	RF	C2	*W14X159	0.080	0.081	1.002	1/B	RF	C11	*W14X159	0.070	0.071	1.016	A/1	RF	C1	*BOX24X24X7/8	0.137	0.142	1.037
12 CI ************************************		18	C2	*W14X159	0.118	0.118	0.999		18	C11	*W14X159	0.105	0.104	0.993		18	C1	*BOX24X24X7/8	0.207	0.210	1.014
16 C ************************************		17	C2	*W14X159	0.156	0.156	0.999		17	C11	*W14X159	0.140	0.138	0.983		17	C1	*BOX24X24X7/8	0.234	0.237	1.014
14 C 14 C 14 C 14 C 14 C 15 0.13 0.25 7 C 14 0.16 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10		16	C2	*W14X176 *W14X176	0.179	0.178	0.999		16	C11	*W14X176 *W14X176	0.161	0.158	0.978		16		*BOX24X24X7/8	0.271	0.277	1.023
12 C2 ************************************		13	C2	*W14X257	0.200	0.199	0.999		13	C11	*W14X257	0.162	0.177	0.972		14		*BOX24X24X7/8	0.455	0.441	1.014
12 C2 ***** 0.158 0.159 0.159 0.159 0.150 0.171 0.971 0.972 0.12 C1 ************************************		13	C2	*W14X257	0.170	0.178	0.996		13	C11	*W14X257	0.163	0.151	0.963		13	C1	*BOX24X24X7/8	0.402	0.414	1.029
11 C2 **** 7.0 9.99 11 C1 ***** 9.173 0.473 1.0.73 0.473 1.0.73 0.497 1.0 C1 ****** 0.21 9 C2 ******* 0.170 0.993 10 C1 ******** 0.155 0.492 9 C1 *************** 0.157 0.167 0.024 0.997 0.167 0.024 0.997 0.167 0.024 0.997 0.024 9 C1 ************************************		12	C2	*W14X257	0.196	0.195	0.995		12	C11	*W14X257	0.179	0.171	0.957		12	C1	*BOX24X24X7/8	0.440	0.451	1.024
10 C2 ************************************		11	C2	*W14X257	0.199	0.198	0.994		11	C11	*W14X257	0.183	0.173	0.947		11	C1	*BOX24X24X7/8	0.529	0.540	1.021
b C ************************************		10	C2	*W14X342	0.171	0.170	0.993		10	C11	*W14X342	0.157	0.148	0.947		10	C1	*BOX24X24X7/8	0.505	0.583	1.153
0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0		9	C2	*W14X342	0.180	0.1/9	0.992		9	C11	*W14X342	0.165	0.155	0.942		9	C1	*BOX24X24X7/8	0.667	0.693	1.040
6 C2 ************************************		8 7	C2	*10/147398	0.160	0.165	0.991		8 7	C11	*W14X398	0.152	0.143	0.937		8 7		*BUX24X24X7/8 *B0Y24Y24Y7/8	0.045	0.677	1.050
5 C2 w1/4455 0.161 0.139 0.588 1.09 1.14 0.137 0.907 5 C1 ************************************		6	C2	*W14X455	0.159	0.157	0.990		, 6	C11	*W14X455	0.135	0.134	0.921		6	C1	*BOX24X24X1	0.531	0.581	1.094
4 C2 *W14X550 0.141 0.139 0.969 4 C11 *W14X550 0.129 0.131 0.901 4 C1 *B0X24X241.125 0.470 0.529 11.31 2 C2 **B0X26X28 0.265 0.262 0.989 *C1 *W14X550 0.140 0.130 0.901 4 C1 *B0X24X241.125 0.476 0.575 0.166 4/3 RF C3 *W14X159 0.180 0.080 1.002 1/C FF C1 *W14X159 0.107 1.013 1/A RF C4 *B0X24X2471, 0 0.181 0.046 1.025 1.016 1.025 1.021 1.025 1.026 1.021 1.025 1.026 1.025 1.021 1.025 1.026 1.025 1.026 1.025 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 <		5	C2	*W14X455	0.161	0.159	0.988		5	C11	*W14X455	0.148	0.134	0.907		5	C1	*BOX24X24X1	0.600	0.658	1.096
3 C2 **W14X550 0.159 0.159 0.250 0.262 0.989 2 C1 **W14X50 0.140 0.120 0.200 2 C1 **B0X24X24X1.12 0.575 0.664 1.154 M2 C2 **B0X26X28 0.266 0.276 0.276 0.276 0.290 1/C C1 **B0X26X28 0.261 0.991 MEZZ C1 **B0X26X28 0.261 0.937 0.073 1.05 A4 RE C4 *B0X24X24X1.25 0.937 0.262 0.037 1.05 A4 RE C4 *B0X24X24X1.26 0.937 0.252 0.221 0.017 1.024 A8 C4 *B0X24X24X7 0.253 0.222 1.020 16 C3 *W14X157 0.138 1.005 1.6 C1 *W14X157 0.163 1.016 1.016 1.016 1.026 4 1.026 4 B0X24X24X7 0.250 0.252 1.026 10 C3 *W14X57 0.181 0.166 1.65 *W14X17 0.161 1.05 1.046 1.065 1.		4	C2	*W14X550	0.141	0.139	0.986		4	C11	*W14X550	0.129	0.117	0.901		4	C1	*BOX24X24X1.125	0.467	0.529	1.131
2 2 **BOX26X28 0.265 0.262 0.988 2 C1 **BOX26X28 0.274 0.989 MEZZ C1 **BOX26X28 0.274 0.980 0.278 1.240 A/3 RF C3 *W14X159 0.019 0.008 1.002 1/C RF C15 *W14X159 0.117 1.653 A/4 RF C4 *BOX24X24X178 0.181 0.181 0.106 1.651 A/4 RF C4 *BOX24X24X778 0.523 0.528 1.066 1.061		3	C2	*W14X550	0.159	0.157	0.989		3	C11	*W14X550	0.144	0.130	0.904		3	C1	*BOX24X24X1.125	0.575	0.664	1.154
MEZZ C2 **BOX26X28 0.276 0.274 0.995 MEZZ C11 **BOX26X28 0.232 0.917 MEZZ C1 *BOX26X24X15 0.587 0.728 1.246 18 C3 *W14X159 0.157 0.151 1.053 A/4 RF C4 *BOX26X24X17 0.238 0.228 1.016 16 C3 *W14X159 0.157 0.158 1.004 17 C15 *W14X159 0.157 0.583 1.021 1.024 *BOX26X24X77 0.350 0.505 1.023 14 C3 *W14X176 0.161 0.161 1.006 13 C15 *W14X257 0.163 1.008 14 C4 *BOX26X24X778 0.448 0.505 1.023 14 C3 *W14X257 0.105 1.14 C15 *W14X257 0.163 1.006 1.023 1.024 1.034 12 C3 *W14X257 0.197 0.198 1.006 12 C15 *W14X2		2	C2	**BOX26X28	0.265	0.262	0.988		2	C11	**BOX26X28	0.240	0.220	0.920		2	C1	*BOX24X24X1.5	0.496	0.578	1.166
N3 RF C.3 *W14X139 0.000 1.002 JL RF CI *B0X24X24X7 0.121 0.128 1.018 17 C3 *W14X139 0.115 0.120 118 C1 *W14X139 0.120 1005 0.107 1024 118 C1 *W14X139 0.120 1005 0.107 1024 118 C1 *W14X139 0.120 1005 0.017 1024 118 C1 *W14X139 0.118 1.018	• 12	MEZZ	C2	**BOX26X28	0.276	0.274	0.995	1/6	MEZZ	C11	**BOX26X28	0.253	0.232	0.917		MEZZ	C1	*BOX24X24X1.5	0.587	0.728	1.240
13 C3 W14X199 0.113 0.120 1.004 17 C15 W14X195 0.105 1.024 1.014 1.027 1.015 C4 BD0X2AR24X7/R 0.250 0	A/3	KF 10	3	*W14X159 *W14X150	0.080	0.080	1.002	1/C	KF 10	C15	*W14X159 *W14X150	0.070	0.073	1.053	A/4	KF 10	C4	*BUX24X24X7/8	0.181	0.189	1.046
16 C3 *W14X176 0.180 1.081 1.004 1.6 C15 *W14X176 0.201 0.025 0.350 0.360 0.351 0.361 0.161 0.051 0.161 0.162 0.161 0.163 0.161 0.163 0.164 1.003 1.3 C4 *#02X42A57(8 0.250 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.037 1.035 1.047 1.035 1.047 1.035 1.047 1		10	3	*W14X159	0.119	0.120	1.003		10	C15	*W14X159	0.105	0.107	1.024		10	C4	*BOX24X24X7/8	0.233	0.238	1.018
15 G3 *W14X165 0.201 0.202 1.005 15 C15 *W14X267 0.1163 1.005 15 C4 *B0X24X24X7/8 0.437 0.450 1.034 13 G3 *W14X257 0.180 0.181 1.006 13 C15 *W14X257 0.156 1.008 13 C4 *B0X24X24X7/8 0.488 0.505 1.034 12 G3 *W14X257 0.190 1.006 11 C15 *W14X257 0.163 0.164 1.003 13 C4 *B0X24X24X7/8 0.529 0.628 0.688 1.005 10 G3 *W14X327 0.173 1.006 10 C15 *W14X242 0.157 0.168 0.995 10 C4 *B0X24X24X7/8 0.670 0.694 1.004 7 G3 *W14X38 0.167 0.168 1.008 7 C15 *W14X36 0.154 0.995 10 C4 *B0X24X24X7/8 0.77 0.843 1.063 7 G3 *W14X398 0.160 1.008 6 C15		16	C3	*W14X176	0.180	0.181	1.004		16	C15	*W14X176	0.161	0.163	1.008		16	C4	*BOX24X24X7/8	0.350	0.360	1.026
14 C3 *W144257 0.172 0.173 1.005 1.016 0.164 1.003 1.0 4 *B0X24X24X7/8 0.528 0.588 1.095 10 C3 *W14X32 0.172 0.173 1.006 10 C15 *W14X32 0.157 0.156 0.995 9 C4 *B0X24X24X7/8 0.670 0.804 1.049 3 3 W14X38 0.167 0.168 1.008 8 C15 W14X38 0.155 0.154 0.996 7 C4 *B0X24X24X7/8 0.777 0.804 1.069 7 C3 *W14X355 0.169 0.170 1.008 7 C15 *W14X57 0.163 0.164 0.990 7 C4 *B0X24X24X1 0.77 0.847		15	C3	*W14X176	0.201	0.202	1.005		15	C15	*W14X176	0.182	0.183	1.005		15	C4	*BOX24X24X7/8	0.537	0.550	1.023
13 C3 *W144257 0.180 0.181 1.006 13 C15 *W144257 0.163 0.164 1.003 13 C4 *B0X24X24X7/8 0.6488 0.559 0.574 1.035 11 C3 *W144257 0.200 0.201 1.006 11 C15 *W144257 0.179 0.190 10 C4 *B0X24X24X7/8 0.628 0.669 10.07 9 C3 *W14X32 0.181 0.182 1.007 9 C15 *W14X342 0.157 0.64 *B0X24X24X7/8 0.679 0.649 1.097 8 C3 *W14X398 0.167 0.168 1.008 8 C15 *W14X398 0.152 0.996 7 C4 *B0X24X24X7/8 0.777 0.847 1.063 6 C3 *W14X398 0.169 1.008 7 C15 *W14X398 0.155 0.153 0.990 7 C4 *B0X24X24X7/8 0.777 0.847 1.063 6 C3 *W14X550 0.149 0.146 0.144 0.990 7		14	C3	*W14X257	0.172	0.173	1.005		14	C15	*W14X257	0.155	0.156	1.008		14	C4	*BOX24X24X7/8	0.447	0.462	1.034
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		13	C3	*W14X257	0.180	0.181	1.006		13	C15	*W14X257	0.163	0.164	1.003		13	C4	*BOX24X24X7/8	0.488	0.505	1.034
11 C3 ************************************		12	3	*W14X257	0.19/	0.198	1.006		12	C15	*W14X257	0.1/9	0.1/9	1.000		12	C4	*BOX24X24X7/8	0.529	0.54/	1.035
10 C3 *W14X342 0.161 0.163 0.164 0.995 9 C4 *B0X24X24X7/8 0.757 0.804 1.047 8 C3 *W14X398 0.162 1.008 8 C5 *W14X398 0.152 0.152 0.152 0.996 8 C4 *B0X24X24X7/8 0.737 0.847 1.060 6 C3 *W14X355 0.152 0.153 0.1990 7 C4 *B0X24X24X7/8 0.737 0.847 1.060 5 C3 *W14X355 0.152 0.153 0.1990 7 C4 *B0X24X24X1 0.608 0.667 1.098 5 C3 *W14X550 0.161 1.008 5 C15 *W14X550 0.148 0.990 7 C4 *B0X24X24X1 0.668 0.667 1.103 3 C3 *W14X550 0.141 0.142 1.008 4 C15 *W14X550 0.129 0.127 0.982 3 C4 *B0X24X24X		10	3	*W/14X237	0.200	0.201	1.006		10	C15	*\\/14X347	0.165	0.162	0.995		10	C4 C4	*BOX24A24A7/8	0.020	0.000	1.090
8 C3 *W14X398 0.167 0.168 1.008 8 C15 *W14X398 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.153 0.990 7 C4 *B0X24X24X7/8 0.737 0.781 1.060 6 G3 *W14X55 0.159 0.150 1.008 6 C15 *W14X55 0.144 0.990 6 C4 *B0X24X24X1 0.608 0.667 1.098 5 G3 *W14X55 0.151 0.161 1.008 5 C15 *W14X55 0.144 0.990 6 C4 *B0X24X24X1 0.608 0.667 1.105 4 G3 *W14X55 0.110 1.012 1.008 4 C15 *W14X55 0.144 0.142 0.989 3 C4 *B0X24X24X1 0.688 0.760 1.105 7 G3 *B0X26X28 0.226 0.237 0.217 0.101 D/1 RC4 *B0X24X24X1<		9	C3	*W14X342	0.181	0.182	1.007		9	C15	*W14X342	0.165	0.164	0.995		9	C4	*BOX24X24X7/8	0.767	0.804	1.049
7 C3 *W14X398 0.169 0.170 1.008 7 C15 *W14X398 0.153 0.990 7 C4 *BOX24X24X7/8 0.797 0.847 1.063 6 C3 *W14X455 0.150 1.008 6 C15 *W14X455 0.144 0.990 6 C4 *BOX24X24X1 0.668 0.667 1.008 4 C3 *W14X55 0.141 0.142 1.008 C15 *W14X55 0.144 0.990 6 C4 *BOX24X24X1.125 0.534 0.666 1.105 2 C3 *W14X55 0.141 0.142 1.009 3 C15 *W14X55 0.144 0.142 0.982 4 C4 *BOX24X24X1.125 0.661 1.076 2 C3 **BOX26X28 0.256 1.009 3 C15 *W14X155 0.144 0.142 0.983 C4 *BOX24X24X1.125 0.667 1.105 MEZZ C3 *BOX26X28 0.278 1.013 MEZZ C5 *W14X159 0.116 0.127 1.011 D/1 RF <td></td> <td>8</td> <td>C3</td> <td>*W14X398</td> <td>0.167</td> <td>0.168</td> <td>1.008</td> <td></td> <td>8</td> <td>C15</td> <td>*W14X398</td> <td>0.152</td> <td>0.152</td> <td>0.996</td> <td></td> <td>8</td> <td>C4</td> <td>*BOX24X24X7/8</td> <td>0.737</td> <td>0.781</td> <td>1.060</td>		8	C3	*W14X398	0.167	0.168	1.008		8	C15	*W14X398	0.152	0.152	0.996		8	C4	*BOX24X24X7/8	0.737	0.781	1.060
6 C3 *W14X455 0.159 0.160 1.008 6 C15 *W14X455 0.144 0.990 6 C4 *BOX24X24X1 0.608 0.667 1.098 4 C3 *W14X550 0.161 0.162 1.008 4 C15 *W14X550 0.127 0.982 4 C4 *BOX24X24X1 0.608 0.607 1.105 3 C3 *W14X550 0.159 0.160 1.009 2 C15 *W14X550 0.144 0.142 0.989 3 C4 *BOX24X24X1.125 0.661 0.769 1.164 MEZZ C3 **BOX26X28 0.266 0.269 1.009 2 C15 **BOX26X28 0.256 1.012 MEZZ C4 *BOX24X24X1.125 0.661 0.769 1.164 MEZZ C3 **BOX26X28 0.274 0.278 1.013 MEZZ C15 **W14X159 0.126 1.011 D/1 RF C23 *BOX24X24X1.78 0.680 0.893 1.252 17 C4 *W14X159 0.156 0.157 1		7	C3	*W14X398	0.169	0.170	1.008		7	C15	*W14X398	0.155	0.153	0.990		7	C4	*BOX24X24X7/8	0.797	0.847	1.063
5 C3 *W14X455 0.161 0.1612 1.008 5 C15 *W14X455 0.146 0.983 5 C4 *B0X24X24X1 0.688 0.760 1.105 3 C3 *W14X550 0.159 0.160 1.009 3 C15 *W14X550 0.127 0.982 4 C4 *B0X24X24X1.125 0.561 0.769 1.164 2 C3 *W14X550 0.159 0.160 1.009 2 C15 *B0X26X28 0.240 0.238 0.994 2 C4 *B0X24X24X1.5 0.568 0.667 1.175 MEZZ C3 *B0X26X28 0.274 0.278 1.013 MEZZ C15 **B0X26X28 0.240 0.238 0.994 2 C4 *B0X24X24X1.5 0.668 1.105 MEZZ C3 *M14X159 0.180 1.082 MEZZ C15 *W14X159 0.126 0.127 1.011 D/1 RF C23 *B0X24X24X1,8 0.688 1.054 MEZZ C3 *W14X159 0.186 0.168 0.199 18		6	C3	*W14X455	0.159	0.160	1.008		6	C15	*W14X455	0.145	0.144	0.990		6	C4	*BOX24X24X1	0.608	0.667	1.098
+ C3 *W14X550 0.141 0.142 1.000 + C15 *W14X550 0.127 0.982 + 4 *B0X24X24X1.125 0.534 0.600 1.133 2 C3 *W14X550 0.159 1.100 2 C15 *W14X550 0.144 0.142 0.982 3 C4 *B0X24X24X1.125 0.568 0.661 7.079 1.164 2 C3 **B0X26X28 0.276 0.278 1.013 MEZZ C15 **B0X26X28 0.256 1.012 MEZZ C4 *B0X24X24X78 0.661 7.69 1.164 MEZZ C3 *W14X159 0.180 0.083 1.032 4/B FF C9 *W14X159 0.126 0.127 1.011 D/I FK C3 *B0X24X24X78 0.214 0.219 1.023 17 C24 *W14X159 0.157 1.011 17 C9 *W14X156 0.233 0.230 0.987 16 C3 *B0X24X24X78 0.246 0.253 1.029 1.036 1.023 1.029 1.036 1.02		5	C3	*W14X455	0.161	0.162	1.008		5	C15	*W14X455	0.148	0.146	0.983		5	C4	*BOX24X24X1	0.688	0.760	1.105
3 C3 **BOX26X28 0.109 1.009 3 C13 **M14X300 0.1747 0.1742 0.299 3 C4 *BOX24X24X1125 0.011 0.0109 1.175 MEZZ C3 **BOX26X28 0.274 0.278 1.013 MEZZ C15 **BOX26X28 0.253 0.256 1.012 MEZZ C4 *BOX24X24X1.5 0.682 0.885 1.258 D/2 RF C24 *W14X159 0.116 18 C9 *W14X159 0.126 0.127 1.011 D/1 RF C23 *BOX24X24X7/8 0.146 0.154 1.054 18 C44 *W14X159 0.156 0.157 1.011 17 C9 *W14X159 0.233 0.230 0.987 16 C23 *BOX24X24X7/8 0.246 0.253 1.002 16 C24 *W14X176 0.170 0.172 1.008 14 C9 *W14X176 0.233 0.230 0.987 16 C23 *BOX24X24X7/8 0.453 0.467 1.032 16 C24 *W14X257		4	3	*W14X550 *W14X550	0.141	0.142	1.008		4	C15	*W14X550 *W14X550	0.129	0.127	0.982		4	C4	*BUX24X24X1.125	0.534	0.606	1.133
MEZZ C3 **BOX26X28 0.274 0.278 1.013 MEZZ C15 **BOX26X28 0.253 0.256 0.101 MEZZ C4 *BOX24X24X1.5 0.682 0.858 1.258 D/2 RF C24 *W14X159 0.080 0.083 1.032 4/B RF C9 *W14X159 0.126 0.127 1.011 D/1 RF C23 *BOX24X24X7/8 0.146 0.154 1.054 18 C24 *W14X159 0.118 0.120 1.016 18 C9 *W14X159 0.216 0.127 1.011 D/1 RF C23 *BOX24X24X7/8 0.246 0.253 1.029 16 C24 *W14X176 0.179 0.180 1.008 16 C9 *W14X176 0.233 0.230 0.987 16 C23 *BOX24X24X7/8 0.248 0.253 1.042 14 C24 *W14X176 0.200 0.201 1.007 15 C9 *W14X176 0.233 0.230 0.987 16 C23 *BOX24X24X7/8 0.433 0.467		2	3	**BOX26X28	0.139	0.100	1.009		2	C15	**BOX26X28	0.144	0.142	0.989		2	C4	*BOX24X24X1.125	0.001	0.709	1.104
D/2 RF C24 *W14X159 0.080 0.083 1.032 4/B RF C9 *W14X159 0.126 0.127 1.011 D/1 RF C23 *BOX24X24X7/8 0.146 0.154 1.054 18 C24 *W14X159 0.118 0.120 1.016 18 C9 *W14X159 0.168 0.168 0.997 18 C23 *BOX24X24X7/8 0.214 0.219 1.023 17 C24 *W14X176 0.177 1.011 17 C9 *W14X159 0.168 0.168 0.997 18 C23 *BOX24X24X7/8 0.214 0.219 1.023 16 C24 *W14X176 0.200 0.201 1.007 15 C9 *W14X176 0.233 0.230 0.987 16 C23 *BOX24X24X7/8 0.453 0.467 1.032 14 C24 *W14X176 0.200 0.201 1.007 15 C9 *W14X257 0.212 0.984 14 C23 *BOX24X24X7/8 0.433 0.467 1.032 14 C24 <td></td> <td>MEZZ</td> <td>C3</td> <td>**BOX26X28</td> <td>0.274</td> <td>0.278</td> <td>1.013</td> <td></td> <td>MEZZ</td> <td>C15</td> <td>**BOX26X28</td> <td>0.253</td> <td>0.256</td> <td>1.012</td> <td></td> <td>MEZZ</td> <td>C4</td> <td>*BOX24X24X1.5</td> <td>0.682</td> <td>0.858</td> <td>1.258</td>		MEZZ	C3	**BOX26X28	0.274	0.278	1.013		MEZZ	C15	**BOX26X28	0.253	0.256	1.012		MEZZ	C4	*BOX24X24X1.5	0.682	0.858	1.258
18 C24 *W14X159 0.118 0.120 1.016 18 C9 *W14X159 0.168 0.997 18 C23 *B0X24X24X7/8 0.214 0.219 1.023 17 C24 *W14X159 0.156 0.157 1.011 17 C9 *W14X159 0.211 0.209 0.991 17 C23 *B0X24X24X7/8 0.246 0.253 1.029 16 C24 *W14X176 0.179 0.180 1.008 16 C9 *W14X176 0.233 0.230 0.987 16 C23 *B0X24X24X7/8 0.246 0.253 1.029 15 C24 *W14X176 0.200 0.201 1.007 15 C9 *W14X176 0.238 0.236 0.984 14 C23 *B0X24X24X7/8 0.488 0.499 1.044 13 C24 *W14X257 0.170 0.172 1.008 12 C9 *W14X257 0.225 0.220 0.978 13 C23 *B0X24X24X7/8 0.449 0.438 1.046 12 C24 *W14X257	D/2	RF	C24	*W14X159	0.080	0.083	1.032	4/B	RF	C9	*W14X159	0.126	0.127	1.011	D/1	RF	C23	*BOX24X24X7/8	0.146	0.154	1.054
17 C24 *W14X159 0.156 0.157 1.011 17 C9 *W14X159 0.211 0.209 0.991 17 C23 *B0X24X24X7/8 0.246 0.253 1.029 16 C24 *W14X176 0.179 0.180 1.008 16 C9 *W14X176 0.233 0.230 0.987 16 C23 *B0X24X24X7/8 0.288 0.299 1.032 15 C24 *W14X176 0.200 0.011 1.007 15 C9 *W14X176 0.228 0.984 15 C23 *B0X24X24X7/8 0.453 0.467 1.032 14 C24 *W14X257 0.170 0.172 1.008 14 C9 *W14X257 0.225 0.220 0.978 13 C23 *B0X24X24X7/8 0.453 0.464 1.044 13 C24 *W14X257 0.196 1.003 12 C9 *W14X257 0.225 0.220 0.978 13 C23 *B0X24X24X7/8 0.456 0.478 1.047 11 C24 *W14X257 0.199		18	C24	*W14X159	0.118	0.120	1.016		18	C9	*W14X159	0.168	0.168	0.997		18	C23	*BOX24X24X7/8	0.214	0.219	1.023
16 C24 *W14X176 0.179 0.180 1.008 16 C9 *W14X176 0.233 0.230 0.987 16 C23 *B0X24X24X7/8 0.288 0.299 1.036 15 C24 *W14X176 0.200 0.201 1.007 15 C9 *W14X176 0.258 0.254 0.984 15 C23 *B0X24X24X7/8 0.453 0.467 1.032 14 C24 *W14X257 0.170 0.172 1.008 14 C9 *W14X257 0.212 0.984 14 C23 *B0X24X24X7/8 0.419 0.438 1.046 12 C24 *W14X257 0.179 0.180 1.005 13 C9 *W14X257 0.225 0.220 0.978 13 C23 *B0X24X24X7/8 0.419 0.438 1.046 12 C24 *W14X257 0.196 0.196 1.003 12 C9 *W14X257 0.244 0.238 0.974 12 C23 *B0X24X24X7/8 0.543 0.568 1.047 11 C24 *W14X342		17	C24	*W14X159	0.156	0.157	1.011		17	C9	*W14X159	0.211	0.209	0.991		17	C23	*BOX24X24X7/8	0.246	0.253	1.029
15 C24 *W14X176 0.200 0.201 1.007 15 C9 *W14X176 0.258 0.254 0.984 15 C23 *B0X24X24X7/8 0.453 0.467 1.032 14 C24 *W14X257 0.170 0.172 1.008 14 C9 *W14X257 0.215 0.212 0.984 14 C23 *B0X24X24X7/8 0.433 0.460 1.044 13 C24 *W14X257 0.179 0.180 1.005 13 C9 *W14X257 0.225 0.220 0.978 13 C23 *B0X24X24X7/8 0.419 0.438 1.046 12 C24 *W14X257 0.196 0.196 1.003 12 C9 *W14X257 0.244 0.238 0.974 12 C23 *B0X24X24X7/8 0.456 0.478 1.047 11 C24 *W14X257 0.199 1.099 1.000 10 C9 *W14X257 0.244 0.238 0.974 12 C23 *B0X24X24X7/8 0.543 0.568 1.047 10 C24 *W1		16	C24	*W14X176	0.179	0.180	1.008		16	C9	*W14X176	0.233	0.230	0.987		16	C23	*BOX24X24X7/8	0.288	0.299	1.036
14 C24 *W14X257 0.170 0.172 1.005 14 C25 *W14X257 0.212 0.304 14 C23 *B0X24X24X7/8 0.430 1.046 13 C24 *W14X257 0.196 0.196 1.003 12 C9 *W14X257 0.244 0.238 0.974 12 C23 *B0X24X24X7/8 0.456 0.478 1.046 12 C24 *W14X257 0.199 0.199 1.000 11 C9 *W14X257 0.244 0.238 0.974 12 C23 *B0X24X24X7/8 0.456 0.478 1.046 11 C24 *W14X257 0.199 0.199 1.000 11 C9 *W14X257 0.249 0.241 0.968 11 C23 *B0X24X24X7/8 0.543 0.568 1.045 10 C24 *W14X342 0.171 0.171 1.000 10 C9 *W14X342 0.212 0.205 0.968 10 C23 *B0X24X24X7/8 0.520 0.612 1.176 9 C24 *W14X342 0.180		15	C24	*W14X1/6 *W14X257	0.200	0.201	1.007		15	C9	*W14X176 *W14X257	0.258	0.254	0.984		15	C23	*BOX24X24X7/8	0.453	0.467	1.032
12 C24 *W14X257 0.196 1.003 12 C9 *W14X257 0.223 0.074 12 C23 *B0X24X24X7/8 0.456 0.478 1.047 11 C24 *W14X257 0.199 0.199 1.000 11 C9 *W14X257 0.244 0.238 0.974 12 C23 *B0X24X24X7/8 0.456 0.478 1.047 11 C24 *W14X257 0.199 0.199 1.000 11 C9 *W14X257 0.249 0.241 0.968 11 C23 *B0X24X24X7/8 0.554 0.0475 10 C24 *W14X342 0.171 0.171 1.000 10 C9 *W14X342 0.212 0.205 0.968 10 C23 *B0X24X24X7/8 0.520 0.612 1.176 9 C24 *W14X342 0.180 1.000 9 C9 *W14X342 0.222 0.214 0.964 9 C23 *B0X24X24X7/8 0.679 0.726 1.069 8 C24 *W14X398 0.166 0.166 1.001 8 </td <td></td> <td>13</td> <td>C24</td> <td>*W14X257</td> <td>0.170</td> <td>0.172</td> <td>1.000</td> <td></td> <td>14</td> <td>C9</td> <td>*W14X257</td> <td>0.215</td> <td>0.212</td> <td>0.904</td> <td></td> <td>14</td> <td>C23</td> <td>*BOX24X24X7/8</td> <td>0.303</td> <td>0.400</td> <td>1.044</td>		13	C24	*W14X257	0.170	0.172	1.000		14	C9	*W14X257	0.215	0.212	0.904		14	C23	*BOX24X24X7/8	0.303	0.400	1.044
11 C24 *W14X257 0.199 1.000 11 C3 *B0X24X24X7/8 0.543 0.568 1.045 10 C24 *W14X342 0.171 0.171 1.000 10 C9 *W14X257 0.249 0.241 0.968 11 C23 *B0X24X24X7/8 0.543 0.568 1.045 9 C24 *W14X342 0.171 0.171 1.000 10 C9 *W14X342 0.212 0.205 0.968 10 C23 *B0X24X24X7/8 0.520 0.612 1.176 9 C24 *W14X342 0.180 1.000 9 C9 *W14X342 0.222 0.214 0.964 9 C23 *B0X24X24X7/8 0.679 0.726 1.069 8 C24 *W14X398 0.166 0.166 1.001 8 C9 *W14X398 0.962 8 C23 *B0X24X24X7/8 0.679 0.726 1.069 8 C24 *W14X398 0.166 0.166 1.001 8 C9 *W14X398 0.962 8 C23 *B0X24X24X7/8 <td></td> <td>12</td> <td>C24</td> <td>*W14X257</td> <td>0.196</td> <td>0.196</td> <td>1.003</td> <td></td> <td>12</td> <td>C.9</td> <td>*W14X257</td> <td>0.244</td> <td>0.238</td> <td>0.974</td> <td></td> <td>12</td> <td>C23</td> <td>*BOX24X24X7/8</td> <td>0.456</td> <td>0.478</td> <td>1.047</td>		12	C24	*W14X257	0.196	0.196	1.003		12	C.9	*W14X257	0.244	0.238	0.974		12	C23	*BOX24X24X7/8	0.456	0.478	1.047
10 C24 *W14X342 0.171 0.071 1.000 10 C9 *W14X342 0.212 0.205 0.968 10 C23 *B0X24X24X7/8 0.520 0.612 1.176 9 C24 *W14X342 0.180 1.000 9 C9 *W14X342 0.222 0.214 0.964 9 C23 *B0X24X24X7/8 0.679 0.726 1.069 8 C24 *W14X398 0.166 0.166 1.001 8 C9 *W14X398 0.962 8 C23 *B0X24X24X7/8 0.658 0.713 1.083 7 C24 *W14X398 0.168 0.168 0.999 7 C9 *W14X398 0.206 0.196 0.954 7 C23 *B0X24X24X7/8 0.710 0.772 1.087 6 C24 *W14X355 0.159 0.158 1.000 6 C9 *W14X455 0.193 0.183 0.951 6 C23 *B0X24X24X7/8 0.710 0.772 1.087 6 C24 *W14X455 0.159 0.158 1.000		11	C24	*W14X257	0.199	0.199	1.000		11	C9	*W14X257	0.249	0.241	0.968		11	C23	*BOX24X24X7/8	0.543	0.568	1.045
9 C24 *W14X342 0.180 1.000 9 C9 *W14X342 0.222 0.214 0.964 9 C23 *BOX24X24X7/8 0.679 0.726 1.069 8 C24 *W14X398 0.166 0.166 1.001 8 C9 *W14X398 0.203 0.195 0.962 8 C23 *BOX24X24X7/8 0.658 0.713 1.083 7 C24 *W14X398 0.168 0.168 0.999 7 C9 *W14X398 0.206 0.196 0.954 7 C23 *BOX24X24X7/8 0.710 0.772 1.083 6 C24 *W14X355 0.159 0.158 1.000 6 C9 *W14X455 0.193 0.183 0.951 6 C23 *BOX24X24X7/8 0.710 0.772 1.083 6 C24 *W14X455 0.159 0.158 1.000 6 C9 *W14X455 0.197 0.183 0.951 6 C23 *BOX24X24X1 0.540 0.613 1.144		10	C24	*W14X342	0.171	0.171	1.000		10	C9	*W14X342	0.212	0.205	0.968		10	C23	*BOX24X24X7/8	0.520	0.612	1.176
8 C24 *W14X398 0.166 0.166 1.001 8 C9 *W14X398 0.203 0.195 0.962 8 C23 *BOX24X24X7/8 0.658 0.713 1.083 7 C24 *W14X398 0.168 0.168 0.999 7 C9 *W14X398 0.206 0.196 0.954 7 C23 *BOX24X24X7/8 0.710 0.772 1.083 6 C24 *W14X455 0.159 0.158 1.000 6 C9 *W14X455 0.193 0.183 0.951 6 C23 *BOX24X24X1 0.540 0.613 1.104 5 C24 *W14X455 0.159 0.158 1.000 6 C9 *W14X455 0.197 0.183 0.951 6 C23 *BOX24X24X1 0.540 0.613 1.144 5 C24 *W14X455 0.161 0.160 0.997 5 C9 *W14X455 0.197 0.186 0.942 5 C23 *BOX24X24X1 0.540 0.603 1.144 <td></td> <td>9</td> <td>C24</td> <td>*W14X342</td> <td>0.180</td> <td>0.180</td> <td>1.000</td> <td></td> <td>9</td> <td>C9</td> <td>*W14X342</td> <td>0.222</td> <td>0.214</td> <td>0.964</td> <td></td> <td>9</td> <td>C23</td> <td>*BOX24X24X7/8</td> <td>0.679</td> <td>0.726</td> <td>1.069</td>		9	C24	*W14X342	0.180	0.180	1.000		9	C9	*W14X342	0.222	0.214	0.964		9	C23	*BOX24X24X7/8	0.679	0.726	1.069
7 C24 *W14X398 0.168 0.196 0.991 7 C2 *B0X24X24X7/8 0.710 0.772 1.087 6 C24 *W14X455 0.159 0.158 1.000 6 C9 *W14X455 0.193 0.183 0.951 6 C23 *B0X24X24X7/8 0.710 0.772 1.087 5 C24 *W14X455 0.159 0.158 1.000 6 C9 *W14X455 0.193 0.183 0.951 6 C23 *B0X24X24X1 0.540 0.613 1.136 5 C24 *W14X455 0.161 0.160 0.997 5 C9 *W14X455 0.197 0.183 0.951 6 C23 *B0X24X24X1 0.540 0.613 1.144		8	C24	*W14X398	0.166	0.166	1.001		8	C9	*W14X398	0.203	0.195	0.962		8	C23	*BOX24X24X7/8	0.658	0.713	1.083
0 رב4 ™W14X455 0.159 0.158 1.000 0 رج ™V14X455 0.193 0.183 0.951 6 رב3 *BUX24X24X1 0.540 0.613 1.136 5 ر24 *W14X455 0.161 0.160 0.997 5 ر9 *W14X455 0.197 0.186 0.942 5 ر23 *BO¥24Y24Y1 0.600 0.607 1.144		7	C24	*W14X398	0.168	0.168	0.999		7	C9	*W14X398	0.206	0.196	0.954		7	C23	*BOX24X24X7/8	0.710	0.772	1.087
		6 F	C24	*W14X455 *W14∨455	0.159	0.158	1.000		6	C9	*W14X455 *W14∨455	0.193	0.183	0.951		6 F	C23	*BOX24X24X1 *BOX24V24V1	0.540	0.613	1.136
	4	C24	*W14X550	0.141	0.140	0.996		4	C9	*W14X550	0.173	0.163	0.939		4	C23	*BOX24X24X1.125	0.472	0.558	1.182	
-----	------	-----	------------	-------	-------	-------	-----	------	-----	------------	-------	-------	-------	-------	------	-----	-----------------	-------	-------	-------	
	3	C24	*W14X550	0.159	0.159	1.002		3	C9	*W14X550	0.192	0.181	0.941		3	C23	*BOX24X24X1.125	0.584	0.708	1.214	
	2	C24	**BOX26X28	0.265	0.265	1.000		2	C9	**BOX26X28	0.325	0.308	0.950		2	C23	*BOX24X24X1.5	0.496	0.608	1.226	
	MEZZ	C24	**BOX26X28	0.276	0.281	1.016		MEZZ	C9	**BOX26X28	0.448	0.330	0.737	M	1EZZ	C23	*BOX24X24X1.5	0.594	0.784	1.321	
D/3	RF	C25	*W14X159	0.080	0.079	0.998	4/C	RF	C19	*W14X159	0.126	0.128	1.021	D/4 R	ιF	C26	*BOX24X24X7/8	0.178	0.185	1.038	
	18	C25	*W14X159	0.119	0.118	0.994		18	C19	*W14X159	0.168	0.169	1.007		18	C26	*BOX24X24X7/8	0.249	0.254	1.018	
	17	C25	*W14X159	0.157	0.156	0.991		17	C19	*W14X159	0.211	0.211	1.003		17	C26	*BOX24X24X7/8	0.283	0.288	1.017	
	16	C25	*W14X176	0.180	0.178	0.989		16	C19	*W14X176	0.233	0.233	1.001		16	C26	*BOX24X24X7/8	0.345	0.354	1.025	
	15	C25	*W14X176	0.201	0.199	0.987		15	C19	*W14X176	0.258	0.258	0.999		15	C26	*BOX24X24X7/8	0.532	0.542	1.019	
	14	C25	*W14X257	0.172	0.170	0.987		14	C19	*W14X257	0.215	0.215	1.000		14	C26	*BOX24X24X7/8	0.442	0.455	1.029	
	13	C25	*W14X257	0.180	0.177	0.983		13	C19	*W14X257	0.225	0.224	0.997		13	C26	*BOX24X24X7/8	0.484	0.498	1.029	
	12	C25	*W14X257	0.197	0.193	0.981		12	C19	*W14X257	0.244	0.243	0.995		12	C26	*BOX24X24X7/8	0.524	0.540	1.030	
	11	C25	*W14X257	0.200	0.195	0.977		11	C19	*W14X257	0.249	0.247	0.992		11	C26	*BOX24X24X7/8	0.624	0.684	1.096	
	10	C25	*W14X342	0.172	0.168	0.977		10	C19	*W14X342	0.212	0.210	0.993		10	C26	*BOX24X24X7/8	0.645	0.674	1.045	
	9	C25	*W14X342	0.181	0.176	0.975		9	C19	*W14X342	0.222	0.220	0.991		9	C26	*BOX24X24X7/8	0.764	0.799	1.046	
	8	C25	*W14X398	0.167	0.162	0.973		8	C19	*W14X398	0.203	0.201	0.991		8	C26	*BOX24X24X7/8	0.733	0.777	1.059	
	7	C25	*W14X398	0.169	0.163	0.967		7	C19	*W14X398	0.206	0.203	0.987		7	C26	*BOX24X24X7/8	0.794	0.843	1.062	
	6	C25	*W14X455	0.159	0.153	0.965		6	C19	*W14X455	0.193	0.190	0.986		6	C26	*BOX24X24X1	0.606	0.669	1.104	
	5	C25	*W14X455	0.161	0.155	0.959		5	C19	*W14X455	0.197	0.193	0.980		5	C26	*BOX24X24X1	0.686	0.763	1.112	
	4	C25	*W14X550	0.141	0.135	0.956		4	C19	*W14X550	0.173	0.170	0.979		4	C26	*BOX24X24X1.125	0.533	0.611	1.148	
	3	C25	*W14X550	0.159	0.152	0.958		3	C19	*W14X550	0.192	0.189	0.982		3	C26	*BOX24X24X1.125	0.659	0.778	1.181	
	2	C25	**BOX26X28	0.266	0.257	0.967		2	C19	**BOX26X28	0.325	0.320	0.986		2	C26	*BOX24X24X1.5	0.568	0.678	1.194	
	MEZZ	C25	**BOX26X28	0.275	0.265	0.963		MEZZ	C19	**BOX26X28	0.448	0.345	0.771	Μ	1EZZ	C26	*BOX24X24X1.5	0.706	0.925	1.310	
			max	0.276	0.281	1.032				max	0.448	0.345	1.053				max	0.797	0.925	1.321	
			count	0	0	0				count	0	0	0				count	0	0	23	
				>1.0	>1.0	>1.1					>1.0	>1.0	>1.1					>1.0	>1.0	>1.1	

C.2.3 Gravity Columns (ref. Report Section 5.A & 5.B)

"Settlement" indicates DCR under existing building condition **combined** with excavation induced ground movements per Report Section 3.B & 5.B

"Existing" indicates DCR under existing building condition per Report Section 3.A & 5.A

Non-	Framed	l Colum	ins		E/tiotil	conditi	on per Re	epoi	rt Sect	ion 3	.A & 5.A	$\overline{\mathbf{v}}$	L		
	11	55444		Existing	Settlemen	t	.		тт			Existing	Settlement	t	
Loc	Level	BEAM	Section	P _U +/ phi*Pn+	P _U +/ phi*Pn+	norm_DCR	L	.0C	Level	BEAM	Section	P _U +/ phi*Pn+	P _U +/ phi*Pn+	norm_DCR	
E/A	ME77	CE	W/9V21	0 1 1 9	0 1 1 6	0.092)/D	DE	C12	*\\/14\\00	0.076	0.075	0.007	\mathbf{i}
5/A 5/D	MEZZ	C27	W8X31	0.118	0.116	0.965	د	0/D	кг 18	C13	*W14X82	0.076	0.075	0.997	\mathbf{i}
5/A.6	RF	C8	*W12X58	0.047	0.046	0.987			10	C13	*W14X82	0.213	0.212	0.995	
-,	18	C8	*W12X58	0.071	0.071	0.995			16	C13	*W14X90	0.232	0.231	0.995	
	17	C8	*W12X58	0.097	0.097	0.999			15	C13	*W14X90	0.293	0.291	0.995	
	16	C8	*W12X58	0.124	0.124	1.001			14	C13	*W14X109	0.292	0.291	0.995	
	15	C8	*W12X58	0.151	0.151	1.002			13	C13	*W14X109	0.343	0.341	0.995	I
	14	C8	*W12X58	0.177	0.178	1.003			12	C13	*W14X132	0.324	0.322	0.995	"norm DCR"
	13	62	*W12X58	0.204	0.205	1.004			11	C13	*W14X132	0.366	0.364	0.995	indicates DCD
	12	60	*W12X65	0.193	0.194	1.005			10	C13	*W14X159	0.335	0.333	0.995	Indicates DCR
	10	60	*W12X05	0.215	0.210	1.005			9	C13	*W14X159 *W14X176	0.370	0.360	0.995	comparison per
	9	C8	*W12X65	0.260	0.255	1.006			7	C13	*W14X176	0.395	0.394	0.995	Report Section
	8	C8	*W12X87	0.210	0.211	1.006			6	C13	*W14X193	0.389	0.387	0.996	301
	7	C8	*W12X87	0.227	0.228	1.006			5	C13	*W14X193	0.417	0.415	0.996	5.0.1
	6	C8	*W12X87	0.244	0.245	1.007			4	C13	*W14X233	0.369	0.368	0.996	
	5	C8	*W12X87	0.260	0.262	1.007			3	C13	*W14X233	0.393	0.391	0.996	
	4	C8	*W12X87	0.277	0.279	1.007			2	C13	*W14X342	0.378	0.376	0.996	
	3	C8	*W12X87	0.294	0.296	1.007	-		MEZZ	C13	*W14X342	0.382	0.381	0.996	
	2 ME77	60	*W12X170	0.253	0.255	1.007	t	5/C		C17	*W14X82	0.076	0.074	0.979	
5/8 5		C14	*\\/14\\	0.200	0.270	1.008			10	C17	*\\/14X82	0.144	0.142	0.966	
5/0.5	18	C14	*W14X82	0.071	0.071	1.007			16	C17	*W14X90	0.213	0.210	0.900	
	17	C14	*W14X82	0.139	0.140	1.012			15	C17	*W14X90	0.293	0.290	0.990	
	16	C14	*W14X82	0.175	0.177	1.012			14	C17	*W14X109	0.292	0.290	0.991	
	15	C14	*W14X82	0.213	0.216	1.013			13	C17	*W14X109	0.343	0.340	0.991	
	14	C14	*W14X82	0.251	0.255	1.013			12	C17	*W14X132	0.324	0.321	0.992	
	13	C14	*W14X82	0.290	0.294	1.013			11	C17	*W14X132	0.366	0.363	0.992	
	12	C14	*W14X90	0.266	0.270	1.013			10	C17	*W14X159	0.335	0.332	0.992	
	11	C14	*W14X90	0.298	0.302	1.014			9	C17	*W14X159	0.3/0	0.36/	0.992	
	10	C14	*//14X90	0.329	0.334	1.014			07	C17	*W14X170	0.304	0.302	0.995	
	8	C14	*W14X109	0.325	0.329	1.014			6	C17	*W14X193	0.389	0.392	0.993	
	7	C14	*W14X109	0.351	0.356	1.014			5	C17	*W14X193	0.417	0.414	0.993	
	6	C14	*W14X120	0.342	0.347	1.014			4	C17	*W14X233	0.369	0.367	0.993	
	5	C14	*W14X120	0.367	0.372	1.015			3	C17	*W14X233	0.393	0.390	0.993	
	4	C14	*W14X132	0.355	0.361	1.015			2	C17	*W14X342	0.378	0.376	0.993	
	3	C14	*W14X132	0.378	0.383	1.015	_		MEZZ	C17	*W14X342	0.382	0.380	0.994	
	2	C14	*W14X193	0.365	0.370	1.015	2	2/B	RF	C12	*W14X82	0.071	0.070	0.993	
FIC A	MEZZ	C14	*W14X193	0.379	0.385	1.016			18	C12	*W14X82	0.141	0.140	0.993	
5/C.4	KF 19	C22	*W12X58 *W12X58	0.047	0.049	1.034			1/	C12	*W14X8Z *W14X00	0.212	0.211	0.993	
	10	C22	*W12X58	0.071	0.075	1.030			10	C12	*W14X90	0.255	0.232	0.993	
	16	C22	*W12X58	0.124	0.100	1.026			14	C12	*W14X109	0.296	0.294	0.993	
	15	C22	*W12X58	0.151	0.155	1.025			13	C12	*W14X109	0.348	0.345	0.993	
	14	C22	*W12X58	0.177	0.182	1.025			12	C12	*W14X132	0.329	0.327	0.993	
	13	C22	*W12X58	0.204	0.209	1.024			11	C12	*W14X132	0.372	0.369	0.994	
	12	C22	*W12X65	0.193	0.197	1.024			10	C12	*W14X159	0.341	0.339	0.994	
	11	C22	*W12X65	0.215	0.220	1.024			9	C12	*W14X159	0.376	0.374	0.994	
	10	C22	*W12X65	0.238	0.243	1.023			8	C12	*W14X176	0.371	0.369	0.994	
	9	C22	*W12X65	0.260	0.266	1.023			7	C12	*W14X176	0.403	0.401	0.994	
	8	C22	*W12X87	0.210	0.215	1.023			6	C12	*W14X193	0.396	0.394	0.994	
	6	C22	*\\/12X07	0.227	0.232	1.023			S ⊿	C12	*W14X193	0.420	0.425	0.994	
	5	C22	*W12X87	0.244	0.249	1.025			т 3	C12	*W14X233	0.377	0.375	0.994	
	4	C22	*W12X87	0.277	0.284	1.022			2	C12	*W14X342	0.386	0.384	0.994	
	3	C22	*W12X87	0.294	0.301	1.022			MEZZ	C12	*W14X342	0.390	0.388	0.994	
	2	C22	*W12X170	0.253	0.259	1.022	2	2/C	RF	C16	*W14X82	0.071	0.070	0.996	
	MEZZ	C22	*W12X170	0.268	0.274	1.022			18	C16	*W14X82	0.141	0.141	0.996	
									17	C16	*W14X82	0.212	0.211	0.996	
									16	C16	*W14X90	0.233	0.232	0.996	
									15	C16	*W14X90	0.295	0.294	0.996	
									14	C16	*W14X109	0.296	0.295	0.996	
									13	C16	*W14X132	0.370	0.370	0.997	
									11	C16	*W14X132	0.372	0.371	0.997	
									10	C16	*W14X159	0.341	0.340	0.997	
									9	C16	*W14X159	0.376	0.375	0.997	
									8	C16	*W14X176	0.371	0.370	0.997	
									7	C16	*W14X176	0.403	0.402	0.997	
									6	C16	*W14X193	0.396	0.395	0.997	
									5	C16	*W14X193	0.426	0.424	0.997	
									4	C16	™W14X233 *\\/14X233	0.3//	0.3/6	0.997	
									3 7	C10	*\W14X233	0.401	0.400 0.205	0.997	
									MEZ7	C16	*W14X342	0.390	0.389	0.997	
			max	0.379	0.385	1.034	-				max	0.426	0.424	0.997	
			count	0	0	0					count	0	0	0	
							_								

					"E	xistina"	indica	tes DCR	under exi	stina buil	dina								
<u>C.3.1 M</u>	IF Con	nectior	<u>ns-Seismic</u>		cc	ondition	oer Re	port Sect	ion 3 A &	5 C	5								
(ref. Re	port S	ection	5.C & 5.D)				p 01 1 10												
							_ "Se	ttlement"	indicates	DCR un	der exi	sting b	uilding co	ndition c	combii	ned			
MF Con	nectio	ns unde	r Seismic Lo	ads				n excavati	ion induce	ed around	d move	ements	per Repo	rt Sectio	on 3.B	& 5.D			
$C_1C_2 =$	1.0	, m_max	x < 6 when T	> 1.0						"norm D		diantar		norioo		on ort C	action		nnaction flowur
J =	2.0	, High Se	eismicity									uicates	S DCR COI	npansoi	трегн	cepon S	ection	3.0.11. 00	
CEBC 20	016, 403	3.4:	10% Thresho	bld						checked	as "de	format	ion contro	lied" ele	ement;	Connec	tion sh	iear chec	ked as "force
				V					λ_{i}	controlle	d" eler	nent pe	er ASCE 4	1- <u>13</u> gu	ideline	S			
			a	Exist	<u> </u>	Settleme	nt O (V				a .::	Exist	<u> </u>	Settleme	nt O (
Loc	Level	BEAM	Section	Q _{UD} /	Q _{UF} /	Q _{UD} /	Q _{UF} /	norm_DCR	norm_DCR	Loc	Level	BEAM	Section	Q_{UD}	Q _{UF} /	Q _{UD} /	Q _{UF} /	norm_DCR	norm_DCR
				m _e *Q _{CE}	k*Q _{CL}	m _e *Q _{CE}	k*Q _{CL}	М	V					$m_e * Q_{CE}$	k*Q _{CL}	$m_e * Q_{CE}$	k*Q _{CL}	М	V
X-DIR										Y-DIR									
A/1-A/2	RF	B1	W30X99	0.601	0.119	0.606	0.120	1.008	1.009	1/A-1/B	RF	B9	W30X99	0.470	0.098	0.533	0.112	1.133	1.139
	18	B1	W30X99	1.011	0.209	1.016	0.210	1.005	1.005		18	B9	W30X99	0.829	0.181	0.906	0.198	1.093	1.093
	17	B1	W30X99	1.416	0.282	1.419	0.283	1.003	1.003		17	B9	W30X99	1.199	0.252	1.274	0.268	1.062	1.065
	16	B1	W30X99	1.751	0.347	1.756	0.348	1.003	1.003		16	B9	W30X99	1.504	0.314	1.581	0.331	1.051	1.054
	15	B1	W30X99	1.937	0.383	1.943	0.385	1.003	1.003		15	B9	W30X99	1.677	0.349	1.757	0.367	1.048	1.050
	14	B1	W33X118	2.13/	0.419	2.145	0.421	1.004	1.004		14	B3	W33X118	1.842	0.380	1.940	0.402	1.053	1.059
	13	BI	W33X118	2.162	0.437	2.1/3	0.439	1.005	1.005		13	B9 B9	W33X118	1.862	0.396	1.967	0.420	1.056	1.060
	12	BI D1	W33X118	2.310	0.464	2.322	0.467	1.006	1.006		12	B9 B0	W33X118	1.991	0.421	2.100	0.440	1.055	1.059
	10	DI B1	W33X110	2.452	0.491	2.400	0.494	1.000	1.007		10	D9 B0	W33X110 W22V110	2.115	0.445	2.220	0.472	1.054	1.059
	0	B1	W33X118	2.301	0.512	2.320	0.510	1.008	1.008		0	B0	W33X118	2.170	0.468	2.2/1	0.492	1.057	1.001
	8	B1	W36X135	2.470	0.517	2.755	0.522	1 012	1 013		8	RQ	W36X135	2.125	0.400	2.257	0.506	1.005	1.000
	7	B1	W36X135	2.353	0.521	2.303	0.527	1 012	1 015		7	B9	W36X135	2.000	0.105	2.133	0.500	1.079	1.075
	6	B1	W36X135	2 270	0.522	2 308	0.557	1 017	1 018		6	B9	W36X135	1 936	0.499	2 098	0.543	1.075	1.088
	5	B1	W36X135	2.364	0.578	2.410	0.590	1.019	1.020		5	B9	W36X135	2.017	0.522	2.194	0.570	1.088	1.092
	4	B1	W36X135	2.430	0.600	2.484	0.614	1.022	1.023		4	B9	W36X135	2.073	0.543	2.266	0.595	1.093	1.097
	3	B1	W36X135	2.519	0.627	2.585	0.644	1.026	1.027		3	B9	W36X135	2.144	0.566	2.362	0.625	1.102	1.104
	2	B1	W36X230	1.914	0.971	1.965	1.000	1.027	1.029		2	B9	W36X230	1.633	0.880	1.792	0.973	1.098	1.106
	MEZZ	B1	BOX24X36	1.909	0.362	1.981	0.377	1.037	1.042		MEZZ	B9	BOX24X36	1.663	0.334	1.850	0.377	1.112	1.128
A/2-A/3	RF	B2	W30X99	0.580	0.138	0.582	0.138	1.002	1.005	1/B-1/C	RF	B31	W30X99	0.548	0.132	0.547	0.136	0.998	1.028
	18	B2	W30X99	1.002	0.226	1.005	0.227	1.003	1.003		18	B31	W30X99	0.903	0.208	0.912	0.213	1.010	1.022
	17	B2	W30X99	1.225	0.272	1.228	0.273	1.003	1.003		17	B31	W30X99	1.092	0.247	1.101	0.252	1.008	1.019
	16	B2	W30X99	1.477	0.323	1.480	0.324	1.002	1.003		16	B31	W30X99	1.312	0.293	1.323	0.298	1.008	1.017
	15	B2	W30X99	1.629	0.355	1.633	0.356	1.002	1.003		15	B31	W30X99	1.449	0.321	1.461	0.327	1.009	1.017
	14	B2	W33X118	1.454	0.400	1.458	0.401	1.003	1.003		14	B31	W33X118	1.303	0.365	1.314	0.372	1.008	1.019
	13	B2	W33X118	1.645	0.450	1.650	0.451	1.003	1.003		13	B31	W33X118	1.469	0.409	1.484	0.416	1.010	1.019
	12	B2 D2	W33X118	1.696	0.463	1.701	0.465	1.003	1.004		12	B31	W33X118	1.513	0.420	1.529	0.428	1.011	1.019
	10	BZ PD	W33X118	1.745	0.4/0	1.750	0.4/8	1.003	1.004		10	B31 D21	W33X118	1.555	0.431	1.5/1	0.440	1.011	1.020
	10	DZ BD	W33X110	1.900	0.510	2.002	0.520	1.003	1.004		10	D31 B31	W33X110 W22V110	1.004	0.407	1.705	0.477	1.013	1.020
	8	B2 B2	W36X135	2 153	0.545	2.002	0.549	1.003	1.004		8	B31	W36Y135	1 005	0.400	1 033	0.490	1.014	1.021
	7	B2	W36X135	2.133	0.545	2.101	0.540	1 004	1.005		7	B31	W36X135	1.905	0.491	1 982	0.505	1.015	1.024
	6	B2	W36X135	1 815	0.500	1 823	0.505	1.001	1.000		6	B31	W36X135	1 591	0.502	1.502	0.515	1 018	1.020
	5	B2	W36X135	1 870	0.575	1.025	0.575	1 005	1.000		5	B31	W36X135	1 630	0.515	1.620	0.527	1 019	1.027
	4	B2	W36X135	1.931	0.614	1.941	0.618	1.005	1.007		4	B31	W36X135	1.673	0.541	1.708	0.557	1.021	1.029
	3	B2	W36X135	2.007	0.637	2.018	0.642	1.005	1.007		3	B31	W36X135	1.724	0.557	1.765	0.574	1.024	1.031
	2	B2	W36X230	1.809	0.974	1.817	0.982	1.005	1.009		2	B31	W36X230	1.556	0.853	1.602	0.882	1.030	1.035
	MEZZ	B2	BOX24X36	1.769	0.355	1.795	0.358	1.015	1.010		MEZZ	B31	BOX24X36	1.534	0.312	1.632	0.326	1.064	1.044
A/3-A/4	RF	B3	W30X99	0.587	0.114	0.585	0.114	0.997	0.998	1/C-1/D	RF	B56	W30X99	0.470	0.098	0.529	0.109	1.123	1.116
•	18	B3	W30X99	1.007	0.206	1.006	0.206	0.999	0.999		18	B56	W30X99	0.829	0.181	0.903	0.196	1.089	1.084
	17	B3	W30X99	1.427	0.282	1.428	0.282	1.000	1.000		17	B56	W30X99	1.199	0.252	1.272	0.267	1.061	1.060
	16	B3	W30X99	1.765	0.347	1.765	0.347	1.000	1.000		16	B56	W30X99	1.504	0.314	1.580	0.329	1.051	1.050
	15	B3	W30X99	1.953	0.384	1.954	0.384	1.001	1.001		15	B56	W30X99	1.677	0.349	1.758	0.366	1.048	1.048
	14	B3	W33X118	2.157	0.421	2.160	0.421	1.002	1.002		14	B56	W33X118	1.842	0.380	1.939	0.400	1.053	1.054

	13	B3	W33X118	2.183	0.439	2.188	0.440	1.002	1.003		13	B56	W33X118	1.862	0.396	1.966	0.419	1.056	1.056
	12	B3	W33X118	2.330	0.466	2.337	0.468	1.003	1.003		12	B56	W33X118	1.991	0.421	2.099	0.445	1.055	1.055
	11	B3	W33X118	2.472	0.493	2.481	0.494	1.003	1.003		11	B56	W33X118	2.113	0.445	2.227	0.470	1.054	1.055
	10	B3	W33X118	2.521	0.514	2.532	0.516	1.004	1.004		10	B56	W33X118	2.148	0.464	2.270	0.490	1.057	1.058
	9	B3	W33X118	2.495	0.519	2.510	0.522	1.006	1.006		9	B56	W33X118	2.123	0.468	2.255	0.498	1.062	1.062
	8	B3	W36X135	2.373	0.523	2.392	0.527	1.008	1.008		8	B56	W36X135	2.008	0.469	2.150	0.503	1.070	1.072
	7	B3	W36X135	2.376	0.531	2.400	0.537	1.010	1.010		7	B56	W36X135	2.011	0.477	2.164	0.514	1.076	1.077
	6	B3	W36X135	2.284	0.554	2.312	0.561	1.012	1.013		6	B56	W36X135	1.936	0.499	2.091	0.539	1.080	1.081
	5	B3	W36X135	2.376	0.579	2.411	0.588	1.015	1.015		5	B56	W36X135	2.017	0.522	2.186	0.566	1.084	1.084
	4	B3	W36X135	2.440	0.601	2.482	0.611	1.017	1.017		4	B56	W36X135	2.073	0.543	2.256	0.591	1.088	1.089
	3	B3	W36X135	2.527	0.627	2.578	0.640	1.020	1.020		3	B56	W36X135	2.144	0.566	2.349	0.620	1.096	1.095
	2	B3	W36X230	1.920	0.974	1.963	0.996	1.022	1.023		2	B56	W36X230	1.633	0.880	1.783	0.963	1.092	1.095
	MEZZ	B3	BOX24X36	1.922	0.364	1.972	0.374	1.026	1.028		MEZZ	B56	BOX24X36	1.663	0.334	1.834	0.371	1.103	1.110
D/1-D/2	RF	B63	W30X99	0.602	0.119	0.634	0.125	1.054	1.049	4/A-4/B	RF	B7	W30X99	0.730	0.155	0.782	0.168	1.071	1.087
-,,-	18	B63	W30X99	1.011	0.209	1.051	0.217	1.039	1.036	.,,=	18	B7	W30X99	1.225	0.275	1.285	0.289	1.049	1.052
	17	B63	W30X99	1.416	0.282	1.454	0.290	1.027	1.026		17	B7	W30X99	1.704	0.375	1.762	0.389	1.034	1.038
	16	B63	W30X99	1.751	0.347	1.791	0.355	1.023	1.022		16	B7	W30X99	2.081	0.461	2.141	0.476	1.029	1.032
	15	B63	W30X99	1.937	0.383	1,980	0.392	1.022	1.021		15	B7	W30X99	2.277	0.507	2.340	0.522	1.028	1.030
	14	B63	W33X118	2 1 3 7	0 419	2 189	0 429	1 024	1 024		14	B7	W33X118	2 437	0.537	2 515	0 556	1 032	1 036
	13	B63	W33X118	2 163	0.115	2.105	0.125	1 026	1 026		13	B7	W33X118	2.137	0.558	2.513	0.550	1 035	1.038
	12	B63	W33X118	2 310	0.157	2 369	0.476	1.026	1 026		12	B7	W33X118	2 599	0.593	2.510	0.615	1 034	1.038
	11	B63	W33X118	2.510	0.101	2.505	0.503	1.020	1.020		11	B7	W33X118	2,355	0.555	2.007	0.613	1 034	1.038
	10	B63	W33X118	2.152	0.151	2.510	0.505	1.020	1 027		10	B7	W33X118	2.700	0.620	2,000	0.052	1.036	1.050
	9	B63	W33X118	2.301	0.512	2.570	0.520	1.027	1 030		9	B7	W33X118	2.005	0.665	2.500	0.000	1 040	1.010
	8	B63	W36Y135	2.177	0.517	2.332	0.530	1.035	1.035		8	B7	W36¥135	2.700	0.005	2.070	0.055	1.047	1.015
	7	B63	W36X135	2.350	0.521	2.450	0.559	1.035	1.035		7	B7	W36X135	2.590	0.039	2.719	0.094	1.047	1.052
	6	B63	W36X135	2.339	0.529	2.450	0.550	1.050	1.039		6	B7	W36X135	2.004	0.074	2.755	0.712	1.052	1.050
	5	B63	W36X135	2.270	0.552	2.304	0.575	1.041	1.042		5	B7	W36X135	2.521	0.710	2.001	0.755	1.055	1.059
	1	B63	W26V135	2.304	0.570	2.709	0.004	1.044	1.044		1	B7	W36V135	2.073	0.797	2.797	0.797	1.050	1.002
	2	B63	W26V135	2.40	0.000	2.540	0.029	1.047	1.052		2	B7	W36V135	2.737	0.707	2.304	0.009	1.002	1.000
	2	B63	M36X330	1 01/	0.027	2.032	1 022	1.055	1.052		2	D7 87	M36A330	2.055	1 226	2.020	1 279	1.009	1.071
	2 ME77	B63	BUX30V230	1.914	0.3/1	2.012	0.386	1.052	1.055		2 ME77	D7 87	BUX34X36	2.134	0.400	2.237	0.541	1.005	1.072
2/J_2/3		B64	M30X00	0.580	0.302	0.595	0.300	1.005	1.007	1/B-1/C		B32	M20X00	1.022	0.755	1.030	0.341	0.007	1.005
0/2-0/3	10		W20X00	1 002	0.130	1 012	0.139	1.008	1.000	ч/D-ч/С	10	D22	W20X00	1 440	0.214	1 452	0.215	1 002	1.002
	10	D04 D64	W20X99	1.002	0.220	1.012	0.220	1.010	1.010		10	D33	W20X99	1.440	0.200	1.400	0.200	1.003	1.000
	16	D04 D64	W20X99	1.225	0.272	1.227	0.272	1.001	1.002		16	D33	W20X99	1.009	0.302	1.074	0.304	1.003	1.005
	10	D04 D64	W20X99	1.4//	0.323	1.470	0.324	1.001	1.001		10	D33	W20X99	2.000	0.344	2.007	0.340	1.003	1.005
	15	D04	W30A99	1.029	0.355	1.031	0.355	1.001	1.002		10	000	W20A99	2.000	0.309	2.007	0.371	1.003	1.000
	17	D04	W22V110	1.404	0.400	1.400	0.401	1.001	1.003		17	000	W22X110	1.009	0.462	1.015	0.424	1.004	1.007
	13	D04 D64	W33A110	1.045	0.450	1.040	0.451	1.002	1.003		10	D33	W33A110	1.990	0.402	2.007	0.405	1.005	1.007
	12	D04	W22V110	1.090	0.405	1.700	0.405	1.002	1.004		11	000	W22X110	2.040	0.470	2.049	0.475	1.005	1.000
	10	D04	W33X110	1.740	0.4/0	1./50	0.470	1.003	1.005		10	D33	W22X110	2.076	0.4/9	2.000	0.465	1.005	1.008
	10	D04	W22X110	1.900	0.510	1.907	0.521	1.004	1.005		10	D33	W22X110	2.220	0.511	2.232	0.515	1.006	1.008
	9	B04	W33X118	1.990	0.543	2.005	0.547	1.005	1.006		9	B35	W33X118	2.301	0.528	2.310	0.533	1.006	1.009
	8	B04	W36X135	2.153	0.545	2.103	0.549	1.005	1.008		8	B35	W36X135	2.510	0.537	2.532	0.543	1.006	1.011
		B04	W36X135	2.213	0.560	2.220	0.505	1.005	1.009			B35	W36X135	2.552	0.544	2.5/1	0.550	1.007	1.011
	6	B64	W36X135	1.815	0.575	1.827	0.581	1.007	1.010		6	B35	W36X135	2.063	0.550	2.079	0.557	1.008	1.012
	5	B04	W36X135	1.870	0.592	1.884	0.599	1.007	1.011		5	B32	W36X135	2.093	0.558	2.110	0.505	1.008	1.013
	4	B04	W36X135	1.931	0.614	1.948	0.621	1.008	1.012		4	B32	W36X135	2.125	0.568	2.144	0.5/5	1.009	1.013
	3	B04	W36X135	2.007	0.63/	2.028	0.646	1.010	1.013		3	B32	W36X135	2.160	0.5/6	2.182	0.584	1.010	1.014
	2	B64	W36X230	1.808	0.973	1.819	0.987	1.006	1.014		2	B32	W36X230	1.995	0.894	2.011	0.909	1.008	1.016
	MEZZ	B64	BUX24X36	1.//1	0.355	1.825	0.362	1.030	1.021		MEZZ	B35	BUX24X36	1.919	0.329	1.952	0.336	1.01/	1.020
D/3-D/4	K⊢ 10	B62	W30X99	0.58/	0.114	0.610	0.120	1.039	1.045	4/C-4/D	KF	B60	W30X99	0./30	0.155	0./65	0.163	1.04/	1.050
	18	B62	W30X99	1.00/	0.206	1.036	0.212	1.029	1.030		18	B60	W30X99	1.225	0.275	1.269	0.285	1.036	1.036
	1/	B65	W30X99	1.427	0.282	1.457	0.288	1.021	1.023		1/	B60	W30X99	1./04	0.3/5	1./49	0.385	1.026	1.02/
	16	B02	W30X99	1./65	0.34/	1./95	0.354	1.01/	1.019		16	R00	W30X99	2.081	0.461	2.129	0.4/2	1.023	1.024

15	B65	W30X99	1.953	0.384	1.985	0.391	1.017	1.018	15	B60	W30X99	2.277	0.507	2.329	0.519	1.023	1.024
14	B65	W33X118	2.157	0.421	2.198	0.430	1.019	1.022	14	B60	W33X118	2.437	0.537	2.501	0.552	1.026	1.028
13	B65	W33X118	2.183	0.439	2.229	0.449	1.021	1.023	13	B60	W33X118	2.434	0.558	2.503	0.574	1.029	1.030
12	B65	W33X118	2.330	0.466	2.379	0.477	1.021	1.023	12	B60	W33X118	2.599	0.593	2.673	0.611	1.029	1.030
11	B65	W33X118	2.473	0.493	2.524	0.504	1.021	1.023	11	B60	W33X118	2.760	0.628	2.841	0.648	1.029	1.031
10	B65	W33X118	2.521	0.514	2.578	0.526	1.023	1.025	10	B60	W33X118	2.805	0.657	2.892	0.678	1.031	1.033
9	B65	W33X118	2.496	0.519	2.560	0.533	1.026	1.027	9	B60	W33X118	2.766	0.665	2.863	0.688	1.035	1.036
8	B65	W36X135	2.373	0.523	2.446	0.540	1.030	1.033	8	B60	W36X135	2.596	0.659	2.701	0.687	1.040	1.042
7	B65	W36X135	2.376	0.531	2.457	0.551	1.034	1.037	7	B60	W36X135	2.604	0.674	2.720	0.705	1.044	1.046
6	B65	W36X135	2.284	0.554	2.369	0.576	1.037	1.040	6	B60	W36X135	2.521	0.710	2.642	0.746	1.048	1.049
5	B65	W36X135	2.376	0.579	2.472	0.604	1.040	1.042	5	B60	W36X135	2.643	0.750	2.777	0.790	1.051	1.052
4	B65	W36X135	2.440	0.601	2.547	0.628	1.044	1.046	4	B60	W36X135	2.734	0.787	2.883	0.831	1.054	1.056
3	B65	W36X135	2.527	0.627	2.650	0.659	1.049	1.050	3	B60	W36X135	2.833	0.825	3.003	0.875	1.060	1.061
2	B65	W36X230	1.921	0.974	2.016	1.026	1.050	1.054	2	B60	W36X230	2.154	1.286	2.278	1.364	1.058	1.061
MEZZ	B65	BOX24X36	1.919	0.363	2.030	0.387	1.058	1.066	 MEZZ	B60	BOX24X36	2.187	0.499	2.333	0.535	1.067	1.071
		total	114			max	1.063	1.067			total	114			max	1.133	1.139
		count	108	0	108	2	0	0			count	106	2	106	2	5	6
			>1.0	>1.0	>1.0	>1.0	>1.1	>1.1				>1.0	>1.0	>1.0	>1.0	>1.1	>1.1

	onnostio	na Thra	chold Sottley	mont Mog	nitudo	_ "Existi per Re	ing" indio eport Se	cates DCR ction 3.A &	under existir 5.C	ng building condition
(ref. Repo	onnection ort Section	ns-Thre n 6)	snola Settlei	nent Mag	nitude	"Settle	ement" i	ndicates D	CR under ex	isting building condition
MF Conr	nections			1	$/ \nabla$	- comb	pined wit	th 88% of e	excavation in	duced ground movements per
$C_1C_2 =$	1.0	, m_max	x < 6 when T	> 1.0 /	Threshold	settlemer	nt for coni	n 3.B & 5.L nection stren	gthening	
] =	2.0	, High S	eismicity		0.88	Ч	ma	x downward	-1.306	
CEBC 201	16, 403.4	10% Th	reshold		by iteration	or A		max upward	0.123	"norm DCR" indicates
				Exist		Settle		1		DCR comparison per Report Section 3 C ii
Loc	Level	BEAM	Section	Q _{UD} /	Q _{UF} /	Q _{UD} /	Q _{UF} /	norm_DCR	norm_DCR	Connection flexure
				m _e *Q _{CE}	k*Q _{CL}	m _e *Q _{CE}	k*Q _{CL}	M	V 🛌	checked as
	<u>.</u>							\leftarrow		"deformation
X-DIR										controlled" element;
A/1-A/2	RF	B1	W30X99	0.601	0.119	0.606	0.120	1.008	1.009	Connection shear
	18	BI B1	W30X99	1.011	0.209	1.016	0.210	1.005	1.005	checked as "force
	16	B1	W30X99	1.751	0.202	1.756	0.348	1.003	1.003	controlled element
	15	B1	W30X99	1.937	0.383	1.943	0.385	1.003	1.003	quidelines
	14	B1	W33X118	2.137	0.419	2.144	0.421	1.004	1.004	guidennes
	13	BI B1	W33X118 W33X118	2.162	0.437	2.1/1	0.439	1.004	1.005	
	11	B1	W33X118	2.452	0.491	2.466	0.494	1.005	1.005	
	10	B1	W33X118	2.501	0.512	2.518	0.515	1.007	1.007	
	9	B1	W33X118	2.476	0.517	2.497	0.521	1.008	1.009	
	8	B1 B1	W36X135	2.355	0.521	2.380	0.52/	1.011	1.011	
	6	B1	W36X135	2.339	0.529	2.309	0.550	1.015	1.015	
	5	B1	W36X135	2.364	0.578	2.405	0.588	1.017	1.018	
	4	B1	W36X135	2.430	0.600	2.478	0.612	1.020	1.020	
	3	B1 B1	W36X135	2.519	0.627	2.5//	0.642	1.023	1.023	
	MEZZ	B1	BOX24X36	1.909	0.362	1.959	0.375	1.024	1.020	
A/2-A/3	RF	B2	W30X99	0.580	0.138	0.581	0.138	1.002	1.004	
	18	B2	W30X99	1.002	0.226	1.005	0.227	1.003	1.003	
	1/	B2 B2	W30X99	1.225	0.272	1.228	0.2/3	1.003	1.003	
	15	B2	W30X99	1.629	0.355	1.633	0.355	1.002	1.003	
	14	B2	W33X118	1.454	0.400	1.458	0.401	1.003	1.003	
	13	B2	W33X118	1.645	0.450	1.649	0.451	1.003	1.003	
	12	B2 B2	W33X118 W33X118	1.696	0.463	1.700	0.464	1.003	1.003	
	10	B2	W33X118	1.900	0.518	1.905	0.520	1.003	1.003	
	9	B2	W33X118	1.996	0.543	2.002	0.545	1.003	1.004	
	8	B2	W36X135	2.153	0.545	2.160	0.548	1.003	1.005	
	6	BZ B2	W36X135 W36X135	2.213	0.560	2.221	0.563	1.004	1.005	
	5	B2	W36X135	1.870	0.592	1.878	0.596	1.004	1.006	
	4	B2	W36X135	1.931	0.614	1.940	0.617	1.004	1.006	
	3	B2	W36X135	2.007	0.637	2.017	0.641	1.005	1.006	
	MF77	B2 B2	BOX24X36	1.769	0.355	1.792	0.358	1.013	1.008	
A/3-A/4	RF	B3	W30X99	0.587	0.114	0.586	0.114	0.998	0.999	
	18	B3	W30X99	1.007	0.206	1.007	0.206	1.000	1.000	
	17	B3	W30X99	1.427	0.282	1.428	0.282	1.001	1.001	
	15	B3	W30X99	1.953	0.347	1.954	0.347	1.001	1.001	
	14	B3	W33X118	2.157	0.421	2.160	0.421	1.002	1.002	
	13	B3	W33X118	2.183	0.439	2.188	0.440	1.002	1.002	
	12	B3 B2	W33X118	2.330	0.466	2.336	0.467	1.003	1.003	
	10	B3	W33X118	2.472	0.495	2.480	0.494	1.003	1.003	
	9	B3	W33X118	2.495	0.519	2.509	0.522	1.005	1.005	
	8	B3	W36X135	2.373	0.523	2.390	0.527	1.007	1.007	
	7	B3 22	W36X135	2.376	0.531	2.398	0.536	1.009	1.009	
	5	B3	W36X135	2.204	0.554	2.309	0.587	1.011	1.013	
	4	B3	W36X135	2.440	0.601	2.477	0.610	1.015	1.015	
	3	B3	W36X135	2.527	0.627	2.572	0.638	1.018	1.018	
	2	B3	W36X230	1.920	0.9/4	1.958	0.993	1.020	1.020	

	MEZZ	B3	BOX24X36	1.922	0.364	1.966	0.373	1.023	1.025
D/1-D/2	RF	B63	W30X99	0.602	0.119	0.631	0.124	1.048	1.044
	18	B63	W30X99	1.011	0.209	1.047	0.216	1.035	1.033
	17	B63	W30X99	1.416	0.282	1.450	0.289	1.024	1.023
	16	B63	W30X99	1.751	0.347	1.787	0.354	1.021	1.020
	15	B63	W30X99	1.937	0.383	1.975	0.391	1.019	1.019
	14	B63	W33X118	2.137	0.419	2.183	0.428	1.021	1.021
	13	B63	W33X118	2.163	0.437	2,212	0.447	1.023	1.023
	12	B63	W33X118	2.310	0.464	2.362	0.475	1.023	1.023
	11	B63	W33X118	2 452	0 491	2 508	0 502	1 023	1 023
	10	B63	W33X118	2 501	0.151	2 562	0.502	1 024	1 024
	9	B63	W33X118	2.301	0.512	2.502	0.521	1.021	1.021
	2	B63	W36Y135	2.477	0.517	2.343	0.551	1.027	1.027
	7	B63	W36Y135	2.355	0.521	2.420	0.557	1.031	1.031
	6	D03	W26V125	2.339	0.529	2.770	0.577	1.037	1.037
	5	D03	W26V125	2.270	0.552	2.333	0.373	1.037	1.037
	2	D03	W30X135	2.304	0.578	2.400	0.000	1.039	1.039
	4	B03	W36X135	2.430	0.600	2.532	0.625	1.042	1.042
	3	B63	W36X135	2.519	0.62/	2.636	0.656	1.046	1.046
	2	B63	W36X230	1.914	0.9/1	2.000	1.01/	1.045	1.04/
	MEZZ	B63	BOX24X36	1.910	0.362	2.016	0.384	1.055	1.059
D/2-D/3	RF	B64	W30X99	0.580	0.138	0.584	0.138	1.007	1.004
	18	B64	W30X99	1.002	0.226	1.011	0.228	1.009	1.009
	17	B64	W30X99	1.225	0.272	1.226	0.272	1.000	1.001
	16	B64	W30X99	1.477	0.323	1.477	0.324	1.000	1.000
	15	B64	W30X99	1.629	0.355	1.629	0.355	1.000	1.001
	14	B64	W33X118	1.454	0.400	1.454	0.400	1.000	1.001
	13	B64	W33X118	1.645	0.450	1.646	0.450	1.001	1.002
	12	B64	W33X118	1.696	0.463	1.698	0.464	1.001	1.002
	11	B64	W33X118	1.746	0.476	1.749	0.477	1.002	1.003
	10	B64	W33X118	1.900	0.518	1.905	0.520	1.003	1.004
	9	B64	W33X118	1.996	0.543	2.003	0.546	1.004	1.005
	8	B64	W36X135	2.153	0.545	2.161	0.549	1.004	1.006
	7	B64	W36X135	2.213	0.560	2.223	0.564	1.005	1.007
	6	B64	W36X135	1.815	0.575	1.825	0.580	1.006	1.008
	5	B64	W36X135	1.870	0.592	1.882	0.598	1.006	1.009
	4	B64	W36X135	1 931	0.614	1 945	0.620	1 007	1 010
	3	B64	W36X135	2 007	0.611	2 025	0.620	1 009	1 011
	2	B64	W36X230	1 808	0.037	1 817	0.011	1.005	1.011
	ME77	B64	BOX24X36	1.000	0.375	1 818	0.361	1.005	1.012
D/2-D/4		B65	M30X00	0.597	0.333	0.609	0.301	1.020	1.010
0/3-0/4	NI 10	DOJ	W20X00	1 007	0.114	1 022	0.119	1.035	1.041
	10		W20X99	1.007	0.200	1.055	0.212	1.020	1.027
	1/		W30X99	1.42/	0.262	1.404	0.200	1.019	1.021
	10	B05	W30X99	1.705	0.347	1.792	0.353	1.016	1.01/
	15	B05	W30X99	1.953	0.384	1.982	0.390	1.015	1.016
	14	B05	W33X118	2.157	0.421	2.193	0.429	1.017	1.019
	13	B65	W33X118	2.183	0.439	2.223	0.448	1.018	1.020
	12	B65	W33X118	2.330	0.466	2.3/3	0.4/6	1.018	1.020
	11	B65	W33X118	2.473	0.493	2.518	0.503	1.019	1.021
	10	B65	W33X118	2.521	0.514	2.571	0.525	1.020	1.022
	9	B65	W33X118	2.496	0.519	2.552	0.531	1.023	1.024
	8	B65	W36X135	2.373	0.523	2.437	0.538	1.027	1.029
	7	B65	W36X135	2.376	0.531	2.448	0.548	1.030	1.032
	6	B65	W36X135	2.284	0.554	2.359	0.573	1.033	1.035
	5	B65	W36X135	2.376	0.579	2.460	0.601	1.035	1.037
	4	B65	W36X135	2.440	0.601	2.534	0.625	1.039	1.040
	3	B65	W36X135	2.527	0.627	2.635	0.655	1.043	1.044
	2	B65	W36X230	1.921	0.974	2.004	1.020	1.044	1.047
	MEZZ	B65	BOX24X36	1.919	0.363	2.017	0.384	1.051	1.058
			total	114		114		-	
		count	(>1.0 or >1.1)	108	0	108	2	0	0

_

				Exist		Settle			
Loc	Level	BFAM	Section	Q _{UD} /	Q _{UF} /	Q _{UD} /	Q _{UF} /	norm DCR	norm DCR
				m_*O_	k*Oci	m_*O_	k*Oci	м	V
				The ALL	· · · ·	The CCE	. CL		<u> </u>
Y-DIR									
1/A-1/B	RF	B9	W30X99	0.470	0.098	0.526	0.110	1.117	1.123
	18	B9	W30X99	0.829	0.181	0.897	0.196	1.082	1.082
	17	B9	W30X99	1.199	0.252	1.266	0.266	1.056	1.058
	16	B9	W30X99	1.504	0.314	1.573	0.329	1.045	1.048
	15	B9	W30X99	1.6//	0.349	1.748	0.365	1.042	1.045
	14	B9 B0	W33X118	1.842	0.380	1.929	0.399	1.047	1.052
	13	D9 B0	W33X110	1.002	0.390	1.954	0.410	1.050	1.055
	11	R9	W33X118	2 113	0.421	2.007	0.468	1.048	1.052
	10	B9	W33X118	2.148	0.464	2.257	0.489	1.051	1.054
	-0	B9	W33X118	2.123	0.468	2.241	0.496	1.056	1.058
	8	B9	W36X135	2.008	0.469	2.137	0.501	1.064	1.069
	7	B9	W36X135	2.011	0.477	2.152	0.512	1.070	1.074
	6	B9	W36X135	1.936	0.499	2.079	0.537	1.074	1.078
	5	B9	W36X135	2.017	0.522	2.173	0.564	1.077	1.081
	4	B9	W36X135	2.073	0.543	2.243	0.589	1.082	1.085
	3	B9	W36X135	2.144	0.566	2.336	0.618	1.089	1.091
	2 ME22	B9	W36X230	1.633	0.880	1.//3	0.962	1.086	1.094
1/B_1/C		D9 221	DUX24X30	0.549	0.334	1.027	0.372	1.099	1.115
1/D-1/C	18	B31	W30X99	0.040	0.132	0.040	0.133	1 009	1.025
	10	B31	W30X99	1.092	0.200	1.100	0.212	1.007	1.017
	16	B31	W30X99	1.312	0.293	1.322	0.298	1.007	1.015
	15	B31	W30X99	1.449	0.321	1.460	0.326	1.008	1.015
	14	B31	W33X118	1.303	0.365	1.313	0.371	1.007	1.017
	13	B31	W33X118	1.469	0.409	1.483	0.415	1.009	1.016
	12	B31	W33X118	1.513	0.420	1.527	0.427	1.009	1.017
	11	B31	W33X118	1.555	0.431	1.570	0.439	1.010	1.017
	10	B31	W33X118	1.684	0.467	1.703	0.475	1.011	1.018
	9	B31	W33X118	1.763	0.488	1.786	0.497	1.013	1.019
	0 7	D31 B31	W36X135	1.905	0.491	1.950	0.501	1.015	1.022
	6	B31	W36X135	1 591	0.502	1.575	0.515	1.015	1.025
	5	B31	W36X135	1.630	0.525	1.658	0.538	1.017	1.025
	4	B31	W36X135	1.673	0.541	1.703	0.555	1.018	1.026
	3	B31	W36X135	1.724	0.557	1.760	0.572	1.021	1.027
	2	B31	W36X230	1.556	0.853	1.593	0.879	1.024	1.030
	MEZZ	B31	BOX24X36	1.534	0.312	1.620	0.324	1.056	1.039
1/C-1/D	RF	B56	W30X99	0.470	0.098	0.522	0.108	1.109	1.103
	18	B56	W30X99	0.829	0.181	0.894	0.194	1.079	1.075
	1/	B56	W30X99	1.199	0.252	1.264	0.265	1.054	1.053
	10	D30 856	W20X99	1.504	0.314	1.372	0.328	1.045	1.045
	13	B56	W33X118	1.077	0.349	1.740	0.304	1.046	1.042
	13	B56	W33X118	1.862	0.396	1.954	0.416	1.049	1.050
	12	B56	W33X118	1.991	0.421	2.086	0.442	1.048	1.049
	11	B56	W33X118	2.113	0.445	2.214	0.467	1.048	1.049
	10	B56	W33X118	2.148	0.464	2.256	0.487	1.050	1.051
	9	B56	W33X118	2.123	0.468	2.239	0.494	1.055	1.055
	8	B56	W36X135	2.008	0.469	2.133	0.499	1.062	1.063
	7	B56	W36X135	2.011	0.477	2.146	0.509	1.067	1.068
	6	B26	W36X135	1.936	0.499	2.0/3	0.534	1.0/1	1.0/1
	5	D20 B26	VV36V125	2.01/	0.522	2.105	0.201	1.074	1.074
	4 2	B56	W36X135	2.075	0.566	2.234	0.565	1 084	1 084
	2	B56	W36X230	1.633	0,880	1.765	0.954	1.081	1.084
	MEZZ	B56	BOX24X36	1.663	0.334	1.813	0.367	1.091	1.097
4/A-4/B	RF	B7	W30X99	0.730	0.155	0.776	0.167	1.063	1.078
	18	B7	W30X99	1.225	0.275	1.279	0.288	1.044	1.047
	17	B7	W30X99	1.704	0.375	1.757	0.388	1.031	1.034
	16	B7	W30X99	2.081	0.461	2.135	0.474	1.026	1.028
	15	B7	W30X99	2.277	0.507	2.333	0.520	1.025	1.027

13 B7 W33X118 2.494 0.558 2.508 0.577 1.030 1.033 12 B7 W33X118 2.590 0.593 2.677 0.613 1.030 1.033 10 B7 W33X118 2.760 0.628 2.842 0.649 1.030 1.035 9 B7 W33X118 2.766 0.655 2.865 0.690 1.042 1.046 8 B7 W36X135 2.521 0.710 2.644 0.707 1.046 1.050 6 B7 W36X135 2.734 0.787 0.791 1.051 1.055 3 B7 W36X135 2.734 0.787 1.030 1.051 1.055 4 B7 W36X135 2.734 0.787 1.031 1.005 1.055 1.058 1.058 1.058 1.058 1.058 1.058 1.058 1.058 1.058 1.058 1.058 1.058 1.058 1.058 1.058		14	B7	W33X118	2.437	0.537	2.506	0.554	1.028	1.032
12 67 W33X118 2.750 0.628 2.842 0.649 1.030 1.033 10 67 W33X118 2.766 0.6657 2.894 0.680 1.032 1.035 9 67 W33X118 2.766 0.657 2.894 0.690 1.042 1.046 7 87 W36X135 2.526 0.659 2.705 0.690 1.042 1.046 6 67 W36X135 2.621 0.710 2.644 0.748 1.049 1.052 5 87 W36X135 2.633 0.750 2.779 0.791 1.051 1.053 3 87 W36X135 2.833 0.825 3.004 0.877 1.060 1.063 4/B-4/C RF 835 W30X99 1.488 0.266 1.453 0.258 1.003 1.005 16 835 <w30x99< td=""> 1.699 0.302 1.673 0.304 1.003 1.005 16 8</w30x99<>		13	B7	W33X118	2.434	0.558	2.508	0.577	1.030	1.034
11 B7 W33X118 2.760 0.628 2.842 0.649 1.035 1.035 9 B7 W33X118 2.705 0.660 1.036 1.035 9 B7 W33X118 2.705 0.690 1.046 1.036 7 B7 W36X135 2.521 0.710 2.644 0.707 1.046 1.050 6 B7 W36X135 2.724 0.707 1.046 1.055 3 B7 <w36x135< td=""> 2.733 0.750 2.779 0.791 1.051 1.055 3 B7<w36x135< td=""> 2.734 0.787 2.884 0.832 1.055 1.053 4/B-4/C RF B35<w30x99< td=""> 1.048 0.248 1.335 1.005 1.063 17 B35<w30x99< td=""> 1.448 0.266 1.453 0.268 1.003 1.005 16 B35<w30x99< td=""> 1.260 0.344 1.931 0.346 1.003 1.005 16 B35<w30x18< td=""><td></td><td>12</td><td>B7</td><td>W33X118</td><td>2.599</td><td>0.593</td><td>2.677</td><td>0.613</td><td>1.030</td><td>1.033</td></w30x18<></w30x99<></w30x99<></w30x99<></w36x135<></w36x135<>		12	B7	W33X118	2.599	0.593	2.677	0.613	1.030	1.033
10 B7 W3X118 2.2805 0.657 2.894 0.680 1.035 9 B7 W33X118 2.766 0.659 2.855 0.690 1.042 1.046 7 B7 W36X135 2.504 0.674 2.724 0.707 1.046 1.055 6 B7 W36X135 2.521 0.710 2.644 0.748 1.049 1.055 5 B7 W36X135 2.643 0.757 2.844 0.832 1.055 1.058 3 B7 W36X135 2.833 0.825 3.004 0.877 1.060 1.063 2 B7 B0X24X6 2.188 0.499 2.333 0.535 1.067 1.005 17 B35 W30X99 1.448 0.499 2.333 0.534 1.003 1.005 17 B35 W30X99 1.266 1.473 0.266 1.001 1.003 1.005 17 B35 W30X118		11	B7	W33X118	2.760	0.628	2.842	0.649	1.030	1.033
9 B7 W3X118 2.766 0.655 2.865 0.690 1.032 1.046 8 B7 W36K135 2.594 0.674 2.724 0.707 1.046 1.050 6 B7 W36K135 2.614 0.750 2.779 0.791 1.051 1.055 5 B7 W36K135 2.734 0.757 2.779 0.791 1.051 1.055 3 B7 W36K135 2.734 0.750 2.779 0.791 1.051 1.055 3 B7 W36K135 2.734 0.750 2.779 0.791 1.051 1.056 2 B7 W36K230 2.184 0.266 1.433 0.536 1.067 1.075 4/B-4/C RF B35 W30X99 1.026 0.302 1.673 0.304 1.003 1.005 16 B35 W30X99 1.026 0.344 1.931 0.344 1.031 1.006 1.007 1.03		10	B7	W33X118	2.805	0.657	2.894	0.680	1.032	1.035
8 87 W36X135 2.596 0.657 2.705 0.690 1.042 1.045 6 B7 W36X135 2.604 0.710 2.644 0.707 1.046 1.055 5 B7 W36X135 2.643 0.750 2.779 0.791 1.051 1.055 4 B7 W36X135 2.433 0.825 3.004 0.877 1.060 1.063 2 B7 W36X135 2.833 0.425 1.057 1.063 2 B7 B0X24X6 2.188 0.499 2.333 0.536 1.067 1.005 17 B35 W30X99 1.649 0.302 1.673 0.304 1.003 1.005 18 B35 W30X99 2.080 0.369 2.086 0.371 1.003 1.005 18 B35 W30X99 2.080 0.369 2.086 0.471 1.044 1.007 17 B35 W33X118 2.090		9	B7	W33X118	2.766	0.665	2.865	0.690	1.036	1.038
7 B7 W36X135 2.604 0.674 2.724 0.707 1.046 1.050 6 B7 W36X135 2.521 0.710 2.644 0.748 1.049 1.052 5 B7 W36X135 2.734 0.750 2.779 0.791 1.051 1.055 4 B7 W36X135 2.734 0.787 2.884 0.832 1.055 1.058 3 B7 W36X135 2.734 0.787 2.884 0.832 1.055 1.066 2 B7 W36X130 2.154 1.286 2.278 1.367 1.067 1.063 4/B-4/C RF B35 W30X99 1.048 0.214 1.030 0.215 0.939 1.005 1.055 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.006 1.0007 1.013 1.006 <td></td> <td>8</td> <td>B7</td> <td>W36X135</td> <td>2.596</td> <td>0.659</td> <td>2,705</td> <td>0.690</td> <td>1.042</td> <td>1.046</td>		8	B7	W36X135	2.596	0.659	2,705	0.690	1.042	1.046
6 B7 W36X135 2.521 0.710 2.644 0.748 1.049 1.052 5 B7 W36X135 2.643 0.750 2.779 0.791 1.051 1.055 3 B7 W36X135 2.734 0.787 2.884 0.832 1.055 1.058 2 B7 W36X135 2.734 1.367 1.0661 1.063 2 B7 W36X135 2.734 1.367 1.067 1.075 4/B-4/C RF B35 W30X99 1.038 0.214 1.030 0.215 0.998 1.002 18 B35 W30X99 1.069 0.302 1.673 0.304 1.003 1.005 16 B35 W30X99 1.260 0.344 1.931 0.344 1.003 1.006 13 B35 W30X18 1.208 0.369 2.086 0.371 1.003 1.007 10 B35 W33X118 2.040 0.471<		7	B7	W36X135	2.604	0.674	2.724	0.707	1.046	1.050
5 B7 W36X135 2.643 0.750 2.779 0.791 1.051 1.055 4 B7 W36X135 2.734 0.787 2.884 0.832 1.055 1.058 2 B7 W36X135 2.833 0.825 3.004 0.877 1.0661 1.063 2 B7 W36X230 2.154 1.286 2.278 1.367 1.067 1.063 4/B-4/C RF B35 W30X99 1.690 0.302 1.673 0.214 1.003 1.005 1.005 17 B35 W30X99 1.690 0.3669 2.086 0.371 1.003 1.005 14 B35 W33X118 1.998 0.462 2.006 0.465 1.004 1.006 13 B35 W33X118 2.009 0.462 2.006 0.462 1.004 1.007 14 B35 W33X118 2.009 0.471 2.048 0.4424 1.004 1.007 <		6	B7	W36X135	2.521	0.710	2.644	0.748	1.049	1.052
4 B7 W36X135 2.755 0.765 2.884 0.832 1.055 1.058 3 B7 W36X135 2.833 0.825 3.004 0.877 1.060 1.063 2 B7 W36X135 2.188 0.499 2.333 0.536 1.067 1.075 4/B-4/C RF B35 W30X99 1.033 0.214 1.030 0.215 0.998 1.002 17 B35 W30X99 1.669 0.302 1.673 0.304 1.003 1.005 16 B35 W30X99 1.260 0.364 2.086 0.371 1.003 1.006 13 B35 W33X118 1.098 0.462 2.006 0.465 1.004 1.007 11 B35 W33X118 2.040 0.471 2.048 0.474 1.004 1.007 11 B35 W33X118 2.020 0.451 1.006 1.007 11 B35 W33X		5	B7	W36X135	2 643	0 750	2 779	0 791	1 051	1 055
1 B7 W36X135 2.131 0.135 0.137 1.023 1.025 2 B7 W36X230 2.154 1.286 2.278 1.367 1.057 1.063 MEZZ B7 B0X24X36 2.188 0.499 2.333 0.526 1.067 1.075 4/B-4/C RF B35 W30X99 1.033 0.214 1.030 0.215 0.998 1.002 18 B35 W30X99 1.660 0.302 1.673 0.344 1.003 1.005 15 B35 W30X99 1.926 0.344 1.931 0.346 1.003 1.006 12 B35 W33X118 1.809 0.421 1.815 0.442 1.004 1.007 11 B35 W33X118 2.006 0.452 1.006 1.007 11 B35 W33K118 2.200 0.511 2.231 0.515 1.007 1.007 11 B35 W34X135 <t< td=""><td></td><td>4</td><td>B7</td><td>W36X135</td><td>2.013</td><td>0.787</td><td>2.884</td><td>0.832</td><td>1.051</td><td>1 058</td></t<>		4	B7	W36X135	2.013	0.787	2.884	0.832	1.051	1 058
2 B7 W35X230 2.154 1.282 2.1367 1.057 1.063 MEZZ B7 B0X24X36 2.188 0.499 2.333 0.536 1.067 1.075 4/B-4/C RF B35 W30X99 1.448 0.266 1.453 0.268 1.003 1.005 16 B35 W30X99 1.669 0.302 1.673 0.304 1.003 1.005 16 B35 W30X99 1.692 0.344 1.931 0.346 1.003 1.005 18 B35 W30X99 1.926 0.344 1.931 0.346 1.003 1.005 18 B35 W33X118 1.998 0.462 2.006 0.471 1.004 1.007 11 B35 W33X118 2.040 0.471 2.048 0.474 1.004 1.007 11 B35 W33X118 2.020 0.511 1.005 1.007 11 B35 W33X135 <		3	B7	W36X135	2.731	0.707	3 004	0.052	1.055	1.050
MEZZ B7 B0X24X36 2.188 0.499 2.333 0.536 1.067 1.075 4/B-4/C RF B35 W30X99 1.033 0.214 1.030 0.215 0.998 1.002 18 B35 W30X99 1.669 0.302 1.673 0.304 1.003 1.005 16 B35 W30X99 1.266 0.344 1.931 0.344 1.003 1.005 16 B35 W30X99 1.260 0.344 1.931 0.344 1.003 1.005 13 B35 W33X118 1.998 0.462 2.006 0.465 1.004 1.007 11 B35 W33X118 2.010 0.511 2.231 0.515 1.004 1.007 10 B35 W33X118 2.200 0.511 2.231 0.542 1.006 1.008 8 B35 W36X135 2.552 0.544 2.569 0.550 1.007 1.011		2	B7	W36Y230	2.055	1 286	2 278	1 367	1.000	1.005
4/B-4/C RF B35 W30X99 1.033 0.214 1.003 1.007 17 B35 W30X99 1.448 0.266 1.453 0.215 0.998 1.003 17 B35 W30X99 1.669 0.302 1.673 0.304 1.003 1.005 16 B35 W30X99 1.260 0.344 1.931 0.346 1.003 1.005 15 B35 W30X99 2.080 0.369 2.086 0.371 1.003 1.006 13 B35 W33X118 1.998 0.462 2.006 0.465 1.004 1.007 10 B35 W33X118 2.040 0.471 2.048 0.474 1.004 1.007 10 B35 W33X118 2.200 0.511 2.231 0.515 1.006 1.007 10 B35 W36X135 2.552 0.544 2.569 0.550 1.006 1.009 7 B35 W3		ME77	B7	BOX24X36	2.134	0.400	2.270	0.536	1.057	1.005
Pr/b=r/b RF B33 W30X99 1.033 0.214 1.033 0.218 0.3936 1.002 17 B35 W30X99 1.669 0.302 1.673 0.304 1.003 1.005 16 B35 W30X99 1.926 0.344 1.931 0.346 1.003 1.005 14 B35 W30X99 2.080 0.369 2.086 0.347 1.003 1.006 13 B35 W33X118 1.099 0.421 1.815 0.442 1.004 1.007 11 B35 W33X118 2.040 0.471 2.048 0.474 1.004 1.007 10 B35 W33X118 2.078 0.479 2.087 0.482 1.004 1.007 10 B35 W33X118 2.070 0.471 2.014 0.532 1.006 1.007 10 B35 W36X135 2.051 0.550 1.007 1.011 10 B35 <	AIR AIC		D7 D2E	M20V00	1.022	0.755	1.020	0.330	1.007	1.073
16 b33 W30X99 1.446 0.200 1.453 0.304 1.003 1.005 16 B35 W30X99 1.926 0.344 1.931 0.346 1.003 1.005 15 B35 W30X99 2.080 0.369 2.086 0.371 1.003 1.005 14 B35 W33X118 1.099 0.421 1.815 0.424 1.003 1.006 13 B35 W33X118 2.040 0.471 2.048 0.474 1.004 1.007 10 B35 W33X118 2.040 0.471 2.048 0.474 1.004 1.007 10 B35 W33X118 2.200 0.511 2.231 0.515 1.005 1.007 10 B35 W33X135 2.552 0.544 2.569 0.550 1.006 1.010 6 B35 W36X135 2.165 0.574 1.008 1.012 5 B35 W36X135 2	4/D-4/C	КГ 10	000	W20X99	1.055	0.214	1.050	0.215	0.990	1.002
1/ B35 W30X99 1.6059 0.302 1.073 0.346 1.003 1.005 16 B35 W30X99 2.080 0.369 2.086 0.371 1.003 1.005 14 B35 W33X118 1.809 0.421 1.815 0.424 1.003 1.006 12 B35 W33X118 2.040 0.471 2.048 0.474 1.004 1.007 11 B35 W33X118 2.040 0.471 2.048 0.474 1.004 1.007 10 B35 W33X118 2.202 0.511 2.231 0.515 1.005 1.007 9 B35 W36X135 2.552 0.544 2.559 0.550 1.006 1.009 7 B35 W36X135 2.053 0.550 2.077 0.556 1.007 1.011 5 B35 W36X135 2.125 0.568 2.142 0.574 1.008 1.021 2		18	B35	W30X99	1.448	0.200	1.453	0.208	1.003	1.005
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1/	B35	W30X99	1.669	0.302	1.6/3	0.304	1.003	1.005
		16	B35	W30X99	1.926	0.344	1.931	0.346	1.003	1.005
		15	B35	W30X99	2.080	0.369	2.086	0.371	1.003	1.005
13 B35 W33X118 1.998 0.462 2.006 0.465 1.004 1.006 12 B35 W33X118 2.040 0.471 2.048 0.474 1.004 1.007 11 B35 W33X118 2.078 0.479 2.087 0.482 1.004 1.007 10 B35 W33X118 2.200 0.511 2.231 0.515 1.006 1.007 9 B35 W33X118 2.301 0.528 2.314 0.532 1.006 1.009 7 B35 W36X135 2.552 0.544 2.569 0.550 1.006 1.010 6 B35 W36X135 2.093 0.558 2.108 0.564 1.007 1.011 4 B35 W36X135 2.125 0.568 2.142 0.574 1.008 1.012 2 B35 W36X135 2.160 0.576 2.179 0.583 1.009 1.012 4/C-4/D RF B60 W30X99 1.704 0.375 1.745 0.384 1.024 <td></td> <td>14</td> <td>B35</td> <td>W33X118</td> <td>1.809</td> <td>0.421</td> <td>1.815</td> <td>0.424</td> <td>1.003</td> <td>1.006</td>		14	B35	W33X118	1.809	0.421	1.815	0.424	1.003	1.006
11 B35 W33X118 2.040 0.471 2.048 0.474 1.004 1.007 11 B35 W33X118 2.078 0.479 2.087 0.482 1.004 1.007 10 B35 W33X118 2.200 0.511 2.231 0.515 1.006 1.008 9 B35 W36X135 2.512 0.544 2.569 0.506 1.006 1.010 7 B35 W36X135 2.063 0.550 2.077 0.556 1.007 1.011 5 B35 W36X135 2.160 0.578 2.108 0.564 1.007 1.011 4 B35 W36X135 2.160 0.576 2.179 0.583 1.009 1.012 2 B35 W36X135 2.160 0.576 2.179 0.583 1.009 1.012 2 B35 W36X230 1.995 0.894 2.009 0.907 1.007 1.013 4/C-4/D RF B60 W30X99 0.730 0.155 0.761 0.162 1.033 <td></td> <td>13</td> <td>B35</td> <td>W33X118</td> <td>1.998</td> <td>0.462</td> <td>2.006</td> <td>0.465</td> <td>1.004</td> <td>1.006</td>		13	B35	W33X118	1.998	0.462	2.006	0.465	1.004	1.006
11 B35 W33X118 2.078 0.479 2.087 0.482 1.004 1.007 10 B35 W33X118 2.200 0.511 2.231 0.515 1.005 1.007 9 B35 W33X118 2.201 0.517 2.531 0.542 1.006 1.009 7 B35 W36X135 2.552 0.544 2.569 0.550 1.006 1.010 6 B35 W36X135 2.063 0.550 2.077 0.556 1.007 1.011 5 B35 W36X135 2.125 0.568 2.142 0.574 1.008 1.012 3 B35 W36X135 2.125 0.568 2.142 0.574 1.008 1.012 2 B35 W36X135 2.160 0.576 2.179 0.583 1.007 1.015 4/C-4/D RF B60 W30X99 1.704 0.355 1.612 1.043 1.045 4/C-4/D RF B60 W30X99 1.704 0.375 1.745 0.384 1.024 <td></td> <td>12</td> <td>B35</td> <td>W33X118</td> <td>2.040</td> <td>0.471</td> <td>2.048</td> <td>0.474</td> <td>1.004</td> <td>1.007</td>		12	B35	W33X118	2.040	0.471	2.048	0.474	1.004	1.007
		11	B35	W33X118	2.078	0.479	2.087	0.482	1.004	1.007
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		10	B35	W33X118	2.220	0.511	2.231	0.515	1.005	1.007
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		9	B35	W33X118	2.301	0.528	2.314	0.532	1.006	1.008
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		8	B35	W36X135	2.516	0.537	2.531	0.542	1.006	1.009
6 B35 W36X135 2.063 0.550 2.077 0.556 1.007 1.011 4 B35 W36X135 2.193 0.558 2.108 0.564 1.007 1.011 4 B35 W36X135 2.125 0.568 2.142 0.574 1.008 1.012 2 B35 W36X135 2.160 0.576 2.179 0.583 1.009 1.012 2 B35 W36X136 1.919 0.329 1.943 0.335 1.013 1.018 4/C-4/D RF B60 W30X99 0.730 0.155 0.761 0.162 1.043 1.045 17 B60 W30X99 1.225 0.275 1.265 0.284 1.021 1.021 15 B60 W30X99 2.277 0.507 2.323 0.517 1.020 1.021 15 B60 W33X118 2.437 0.537 2.494 0.550 1.023 1.025 <t< td=""><td></td><td>7</td><td>B35</td><td>W36X135</td><td>2.552</td><td>0.544</td><td>2.569</td><td>0.550</td><td>1.006</td><td>1.010</td></t<>		7	B35	W36X135	2.552	0.544	2.569	0.550	1.006	1.010
5 B35 W36X135 2.093 0.558 2.108 0.564 1.007 1.011 4 B35 W36X135 2.125 0.568 2.142 0.574 1.008 1.012 3 B35 W36X135 2.160 0.576 2.179 0.583 1.009 1.012 2 B35 W36X230 1.995 0.894 2.009 0.907 1.007 1.015 4/C-4/D RF B60 W30X99 0.730 0.155 0.761 0.162 1.043 1.045 17 B60 W30X99 1.704 0.375 1.745 0.384 1.024 1.021 16 B60 W30X99 2.277 0.507 2.323 0.517 1.020 1.021 14 B60 W33X118 2.437 0.537 2.494 0.550 1.023 1.025 13 B60 W33X118 2.434 0.558 2.495 0.572 1.025 1.026 14 B60 W33X118 2.766 0.628 2.831 0.645 1.026 <td></td> <td>6</td> <td>B35</td> <td>W36X135</td> <td>2.063</td> <td>0.550</td> <td>2.077</td> <td>0.556</td> <td>1.007</td> <td>1.011</td>		6	B35	W36X135	2.063	0.550	2.077	0.556	1.007	1.011
4 B35 W36X135 2.125 0.568 2.142 0.574 1.008 1.012 3 B35 W36X135 2.160 0.576 2.179 0.583 1.009 1.012 2 B35 W36X230 1.995 0.894 2.009 0.907 1.007 1.015 MEZZ B35 BOX24X36 1.919 0.329 1.943 0.335 1.013 1.018 4/C-4/D RF B60 W30X99 0.730 0.155 0.761 0.162 1.043 1.045 18 B60 W30X99 1.225 0.275 1.265 0.284 1.021 1.021 15 B60 W30X99 2.277 0.507 2.323 0.517 1.020 1.021 14 B60 W33X118 2.437 0.537 2.494 0.550 1.025 1.026 12 B60 W33X118 2.760 0.628 2.831 0.645 1.026 1.027		5	B35	W36X135	2.093	0.558	2.108	0.564	1.007	1.011
3 B35 W36X135 2.160 0.576 2.179 0.583 1.009 1.012 2 B35 W36X230 1.995 0.894 2.009 0.907 1.007 1.015 4/C-4/D RF B60 W30X99 0.730 0.155 0.761 0.162 1.043 1.045 18 B60 W30X99 1.704 0.375 1.745 0.384 1.024 1.021 16 B60 W30X99 2.081 0.461 2.124 0.471 1.021 1.021 15 B60 W30X99 2.277 0.507 2.323 0.517 1.020 1.021 16 B60 W33X118 2.437 0.537 2.494 0.550 1.023 1.025 13 B60 W33X118 2.437 0.537 2.494 0.550 1.026 1.027 10 B60 W33X118 2.436 0.665 2.685 0.609 1.025 1.026		4	B35	W36X135	2.125	0.568	2.142	0.574	1.008	1.012
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3	B35	W36X135	2.160	0.576	2.179	0.583	1.009	1.012
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	B35	W36X230	1 995	0.894	2 009	0 907	1 007	1 015
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		MF77	B35	BOX24X36	1 919	0.001	1 943	0.335	1 013	1 018
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4/C-4/D	DE	B60	M/30X00	0.730	0.525	0.761	0.555	1.013	1.010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-7/C -7/D	10	B60	M/30X00	1 225	0.135	1 265	0.102	1.045	1 033
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	DOU DCO	W20X99	1.223	0.275	1.205	0.204	1.032	1.035
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16	DOU DCO	W20X99	2.001	0.373	2 1 2 4	0.304	1.024	1.025
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10		W20X99	2.001	0.401	2.124	0.4/1	1.021	1.021
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10		W30X99	2.2//	0.507	2.323	0.517	1.020	1.021
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14	DOU	W33X110	2.437	0.557	2.494	0.550	1.025	1.025
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13	B60	W33X118	2.434	0.558	2.495	0.5/2	1.025	1.026
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	B60	W33X118	2.599	0.593	2.665	0.609	1.025	1.026
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		11	B60	W33X118	2.760	0.628	2.831	0.645	1.026	1.027
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	B60	W33X118	2.805	0.657	2.882	0.676	1.028	1.029
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9	B60	W33X118	2.766	0.665	2.852	0.686	1.031	1.032
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	B60	W36X135	2.596	0.659	2.689	0.684	1.036	1.038
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7	B60	W36X135	2.604	0.674	2.707	0.701	1.039	1.041
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	B60	W36X135	2.521	0.710	2.628	0.741	1.042	1.044
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5	B60	W36X135	2.643	0.750	2.761	0.785	1.045	1.046
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	B60	W36X135	2.734	0.787	2.865	0.826	1.048	1.049
2 B60 W36X230 2.154 1.286 2.263 1.355 1.051 1.053 MEZZ B60 BOX24X36 2.187 0.499 2.316 0.530 1.059 1.063 total 114 114 114 2 2 3		3	B60	W36X135	2.833	0.825	2.983	0.869	1.053	1.054
MEZZ B60 BOX24X36 2.187 0.499 2.316 0.530 1.059 1.063 total 114		2	B60	W36X230	2,154	1.286	2,263	1.355	1.051	1.053
total 114 114 count(>1.0 or >1.1) 106 2 106 2 2 3		MEZZ	B60	BOX24X36	2.187	0.499	2.316	0.530	1.059	1.063
count(>1.0 or >1.1) 106 2 106 2 2 3				total	114	555	114	0.000	2.000	2.000
			count(>1.0 or >1.1)	106	2	106	2	2	3

FDIC Building at 25 Jessie Street, San Francisco, CA

Appendix C

Letter by Langan dated December 15, 2017, providing, Existing FDIC Building Pile Capacity; L-Pile analysis detailing existing pile foundation flexural and shear demands due to (a) excavation induced site movement; and (b) ASCE 41-13 seismic demands

December 15, 2017

Prepared by: Nabih Youssef Associates NYA Project: 17164.01

Prepared for: Oceanwide Center LLP, 88 First Street, 6th Floor, San Francisco, CA 94105 Los Angeles • San Francisco • Irvine One Sansome Street, Suite 3670 • San Francisco, CA 94104 • T: 415.397.5213 • www.nyase.com

Technical Excellence Practical Experience Client Responsiveness

15 December 2017

Ms. Linlin Huang Oceanwide Center LLC 88 First Street, 6th Floor San Francisco, California 94105

Subject: Geotechnical Analysis FDIC Building – Pile Axial Capacity and Lateral Resistance Oceanwide Center – 1st and Mission Streets San Francisco, California Project No.: 750621401

Dear Ms. Huang:

This letter presents the results of supplemental geotechnical analysis for the pile foundations supporting the FDIC Building at 25 Jessie Street, which is adjacent to the Oceanwide Center project in San Francisco, California. The Oceanwide Center project consists of construction of two new towers over three to four basement levels. The towers will be supported on drilled shafts that extend into bedrock. Construction of the planned basements and foundations will require excavations extending about 72 feet below the existing ground surface for Tower 1 and about 65 feet below the existing ground surface for Tower 2. An internally-braced cutoff wall, consisting of deep soil mixed (DSM) panels, is planned to temporarily support the excavation. We conducted a geotechnical investigation for this project and presented our findings and recommendations in a report dated 1 July 2015.

This supplemental analysis includes an estimation of axial pile capacities and lateral pile group resistance for the piles beneath the FDIC building to assist in the structural evaluation of the building. Based on the structural plans¹ reviewed, we understand the FDIC building is an 18-story steel-framed office building on a pile-supported foundation system consisting of 12-inch-square driven concrete piles. We understand the piles were driven to refusal, with planned pile tips approximately 67 feet below the existing ground surface (about Elevation -60 feet, SFCD), which locates the pile tips on a stratum of dense sand known locally as Colma Formation.

Ultimate Pile Capacities

The structural plans for the FDIC building indicate that the piles were originally designed for an allowable dead plus live load of 200 kips. Assuming a factor of safety of 2.0 for dead plus live loads, this is an ultimate capacity of 400 kips. We evaluated the estimated axial pile capacity using the subsurface information gathered from the Oceanwide Center investigation and conclude an ultimate compressive capacity of about 400 kips is appropriate. From our analysis, we conclude an ultimate uplift (tension) capacity of about 190 kips. This capacity assumes that

¹ "Ecker Square" structural plans prepared by Raj Desai Associates, Inc. and dated 15 June 1981.

the driven piles achieved a minimum embedment of about 10 feet in the dense Colma Formation sand.

Lateral Pier Analysis – Earthquake Loading

At the request of the team, we analyzed the lateral resistance of the piles and pile groups within the 25 Jessie Street seismic frame using loading parameters provided by Nabih Youssef Associates for their seismic evaluation of the structure. Using the estimated dead, live, and seismic load combinations provided by Nabih Youssef Associates, and presented on Figure A-1, we calculated the maximum axial and shear load demands on each of the pile caps for seismic loading in the east-west and north-south directions. These calculated loads are presented on Figure A-2.

For modeling the pile groups, we modeled the concrete pile layout for each pile cap within the seismic frame using the program Group (2016 v. 10.09 by Ensoft) based on the pile cap details presented in the sheet "S10, Pile & Pile Cap Details" of the structural plans. The pile caps were modeled as embedded below the ground surface, as shown on the structural plans (Sheet S3 and S10). We performed our analysis for free-head conditions of 12-inch-square pre-cast prestressed piles. When the design axial load is in compression, we used a modulus of elasticity equal to 4.9×10^6 pounds per square inch (psi)² and a moment of inertia equal to 1,728 in⁴. When subjecting the pile groups to a net uplift case, a value equal to half of the theoretical modulus of elasticity was used. The concrete strength was modeled as 6,500 psi, as shown on Sheet S10 of the structural plans.

The twelve pile groups were analyzed for axial compression and shear loading in the east, west, north, and south loading directions. Four pile groups were analyzed for axial tension and shear loading in the east, west, north and south loading directions. For each loading condition, the maximum deflection, maximum bending moment, depth to maximum bending moment, and maximum shear load in any individual pile within the pile group was calculated. The results are presented in Figures A-3 through A-18.

Lateral Pile Analysis – Excavation-Induced Deformations

Construction of the planned basements and foundations at Oceanwide Center Development will require excavations about 65 feet below the existing ground surface for Tower 2 and 76 feet below the existing ground surface for Tower 1. Brierley and Associates has performed a 3-dimensional numerical analysis of the excavation for Towers 1 and 2. The excavation-induced ground deformations and lateral wall movements were presented in memorandum dated 7 July 2017³. The pile foundations at 25 Jessie Street will be subjected to lateral soil movements during the excavation process as the shoring walls deflect laterally. The differential lateral soil movement will induce shear and associated bending moments in the concrete piles.

³ "Oceanwide Center, 526 Mission Street, San Francisco, 3D Finite Element Analysis Stage 1: Tower 2 Excavation (Rev. 1)" and "Oceanwide Center, 526 Mission Street, San Francisco, 3D Finite Element Analysis Stage 2: Tower 1 Excavation (Rev. 1)"

² Assumes modulus of elasticity (E) = $33*\gamma^{1.5}_{\text{concrete}}\sqrt{(f'_c)}$

To estimate the loads and moments imposed on the pile foundations at 25 Jessie Street during the excavation process, we modeled the soil deformations (i.e. soil movement) along the length of the piles using program L-Pile (2016 version 9 by Ensoft). The soil movements were interpreted from the soil and wall deformations presented in Brierley and Associates' analysis. The piles were analyzed for estimated deflections in both the north-south and east-west directions. The piles were modeled as 12-inch-square, pre-cast, pre-stressed piles with a free head condition and an axial load of 100 and 200 kips. The assumed soil deformation profiles at Columns 3, 5, 73, and 75 and the results of our analyses are presented on Figure B-1 through Figure B-16.

We trust this letter provides the information needed. If you have any questions, please call.

Sincerely yours,

Langan Engineering & Environmental Services, Inc.

Project Engineer

Just A. Wolfor

Scott A. Walker, GE Senior Associate

750621401.60_SAW_GTK Evaluation_FDIC Piles

Attachments: Figures A-1 through A-18 and Figures B-1 through B-16.

FIGURES

FORCE ON PILES PER ASCE 41

75

Column Number

2. SOLID BOXES ARE FOR SEISMIC FRAME COLUMNS. DASHED BOXES ARE FOR GRAVITY COLUMNS.

Figure A-1

Pile Cap Loading Detail

25 Jessie, SF, CA

KLW

11/1/2017 Calculated Loads, Directions fro Axial Load under Axial Load under Axial Load un downward EQ in East-Axial Load under upward downward EQ in North-EQ in Nort Pile Cap Top of Pile Cap West EQ in East-West South Direction Direct Thickness Elevation (ft) Forces on Piles Caps (kips) Model North (-z) (kips) (kips) (kips) (kip = 1.1D+0.275L+Ex (except = 1.1D+0.275L+Ey Pile Cap at corners where Eq = Column Project except at corners where SFCD Ex+0.3Ey) =0.9D-Ex Eq = Ey + 0.3Ex) =0.9D No. Type ft in Datum VX VY DL LL ΕX ΕY Direction 167 140 534 138 1824 1877 3012 1 7 4.5 54 -5.50 1.95 South -1343 3050 -13 2 7 4.5 54 -5.50 1.95 341 25 757 252 97 426 999 584 1328 255 South 265 175 3 7 4.5 54 -5.50 1.95 341 29 763 83 512 South 995 604 1424 -5.72 168 201 590 229 1776 2117 North 3123 -1245 3362 -158 5 8 4.5 54 -13.17 15 10 4.25 51 -13.17 -5.72 27 367 963 518 545 705 North 1747 322 1907 162 576 22 291 255 478 1389 210 21 7 4.5 54 -5.50 1.95 764 112 West 1023 576 51 4.5 54 -5.50 1.95 22 291 764 255 478 112 West 1389 210 1023 7 60 10 4.25 51 -13.17 -5.72 27 367 963 518 545 705 North 1747 322 1907 162 7 54 -5.50 1.95 167 140 534 138 1824 1877 3012 -1343 3050 -139 71 4.5 North 72 7 4.5 54 -5.50 1.95 341 25 757 252 97 426 North 999 584 1328 255 265 995 175 73 7 4.5 54 -5.50 1.95 341 29 763 83 512 North 604 1424 75 8 4.5 54 -5.50 1.95 168 201 590 229 1776 2117 North 3123 -1245 3362 -158

From: Sudharshan Navalpakkam [mailto:snavalpakkam@nyase.com]

Sent: Friday, September 01, 2017 4:38 PM

To: Linlin Huang; Scott Walker; Justin Ray; Dae-Hwan Kim; Michael Gemmill Subject: RE: 25 Jessie FDIC Building Pile evaluation - Estimated Foundation demands for Geotech review - Load Combinations

Pile Tip Elevation (ft) Project All, SFCD Datum -67 -59.55

Per our conference call yesterday, please see below for follow-up info. on the ASCE 41 load combinations we need to use to evaluate the pile foundations:

f'c (psi)	6500
wc (pcf)	150
Ec* (psi)	4887733

ASCE 41-13 has two load combinations for seismic loads:

1. 1.1D + 0.275L +/- EQ - this load combination governs for downward load (with positive, i.e, downward EQ)

2. 0.9D +/- EQ - this load combination governs for uplift load case (with negative EQ)

where D=dead load; L=live load & EQ= seismic load.

Shear	
Modulus,	
G (psi)	2036556

EQ may be taken as the maximum of Ex or Ey for all columns, except the (4) corner columns. At the (4) corner columns, EQ =100% EX + 30% EY or 100% EY + 30% EX because they are subjected to biaxial loading. So the easiest way to implement this is to use maximum(1.0EX+0.3EY, 0.3EX+1.0EY).

*Note: For the four cases that experience net axial tension, 50% of the gross EI was used assuming a cracked pile cross section

om Map		
der upward		
th-South	Shear at Column along	Average Shear along Frame
tion	Frame Line in East-West	Line in North-South
os)	Direction (Vx average)	Direction (Vy average)
	(kips)	
	(colors indicate shear	(kips)
D-Ey	walls)	(colors indicate shear walls)
96	254	216
5	254	25
5	254	29
86	254	284
2	27	284
6	22	216
6	22	216
2	27	284
96	254	216
5	254	25
5	254	29
86	254	284

25 Jessie Street 12-6"-San Francisco, CA - 3-0* --11.9" ---- 3'-0* -- 3'-0* -1-9"-Pile Response using Group v8.0 KLW 1 2 3 4 10/6/2017 North 6-0 Column 1 5 7 6 Shear Load Direction East Axial Load (kips) 3,012 1 -1 -3'-0°-3-0*-Shear Load (kips) 254 **Bending Moment** Deflection Depth to Maximum Shear (lb-in) Moment (in) (lbs) (in) Y-Direction Z-direction Z-direction Y-Direction

808,000

5

41

5

35,800

1

0.36

5,6,7

Maximum

Pile #

Shear Load Direction	West			
Axial Load (kips)	3,012			
Shear Load (kips)	254			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.36	808,000	41	35,800
Pile #	5,6,7	7	7	4

Shear Load Direction	North			
Axial Load (kips)	3,050			
Shear Load (kips)	216			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.27	618,000	41	27,100
Pile #	All	5 and 7	5 and 7	5 and 7

Shear Load Direction	South			
Axial Load (kips)	3,050			
Shear Load (kips)	216			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.27	621,000	41	28,400
Pile #	All	1 and 4	1 and 4	1 and 4

25 Jessie Street 12-6"-San Francisco, CA 1-9"--1'.9" ------ 3'-0* -- 3-0*-- 3'-0* -+ Pile Response using Group v8.0 KLW 1 2 3 4 10/27/2017 North 6-0* 3'-0' Column 1 5 7 6 Shear Load Direction East Axial Load (kips) -1,343 1 ----3'-0"--3-0*-Shear Load (kips) 254

	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.39	580,000	34	34,900
Pile #	5,6,7	5	5	5

Shear Load Direction	West			
Axial Load (kips)	-1,343			
Shear Load (kips)	254			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.39	580,000	34	34,900
Pile #	5,6,7	7	7	7

Shear Load Direction	North			
Axial Load (kips)	-1,396			
Shear Load (kips)	216			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.30	446,000	34	26,700
Pile #	All	5 and 7	5 and 7	5 and 7

Shear Load Direction	South			
Axial Load (kips)	-1,396			
Shear Load (kips)	216			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.30	455,000	34	27,200
Pile #	All	1 and 4	1 and 4	1 and 4

25 Jessie Street 12-6"-San Francisco, CA - 3'-0* -- 3-0* -1-9"-- 3'-0* -Pile Response using Group v8.0 KLW 1 2 3 4 10/6/2017 North 6-0* Column 2 5 7 6 Shear Load Direction East Axial Load (kips) 999 1 1 _1 3-0*-3-0*-Shear Load (kips) 254 Deflection Bending Moment Depth to Maximum Shear

	Dencetion	Berraing moment	Depth to Maximum	oncar
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.35	753,000	41	35,600
Pile #	5,6,7	5	5	5

Shear Load Direction	West			
Axial Load (kips)	999			
Shear Load (kips)	254			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.35	753,000	41	35,600
Pile #	5,6,7	7	7	7

Shear Load Direction	North			
Axial Load (kips)	1,328			
Shear Load (kips)	25			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.03	62,400	41	2,960
Pile #	All	5 and 7	5 and 7	5 and 7

Shear Load Direction	South			
Axial Load (kips)	1,328			
Shear Load (kips)	25			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.03	75,900	41	3,670
Pile #	All	1 and 4	1 and 4	1 and 4

25 Jessie Street 12-6"-San Francisco, CA - 3'-0* -- 3-0* -1-9"-- 3'-0* -Pile Response using Group v8.0 KLW 1 2 3 4 10/6/2017 North 6-0* Column 3 5 7 6 Shear Load Direction East Axial Load (kips) 995 1 1 _1 3-0*-3-0*-Shear Load (kips) 254 Deflection Bending Moment Depth to Maximum Shear

	Demeetion	Berraing moment	Bepen to maximum	oncar
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.35	753,000	41	35,600
Pile #	5,6,7	5	5	5

Shear Load Direction	West			
Axial Load (kips)	995			
Shear Load (kips)	254			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.35	753,000	41	35,600
Pile #	5,6,7	7	7	7

Shear Load Direction	North			
Axial Load (kips)	1,424			
Shear Load (kips)	29			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.03	72,600	41	3,430
Pile #	All	5 and 7	5 and 7	5 and 7

Shear Load Direction	South			
Axial Load (kips)	1,424			
Shear Load (kips)	29			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.03	76,100	41	3,670
Pile #	All	1 and 4	1 and 4	1 and 4

25 Jessie Street			17.01	-1
San Francisco, CA			"3'.0"	- 3'-0"
Pile Response using Group v&	3.0 Noi	rth		
KLW				1-5"
10/6/2017			2 3	
Column 5		5-10"	Ç→v 2	3-0
Shear Load Direction	East	5	6 7	8
Axial Load (kips)	3,123			
Shear Load (kips)	254			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	1.07	1,600,000	59	36,300
Pile #	All	4 and 8	4 and 8	4 and 8

Shear Load Direction	West			
Axial Load (kips)	3,123			
Shear Load (kips)	254			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	1.07	1,600,000	59	36,300
Pile #	All	1 and 5	1 and 5	1 and 5

Shear Load Direction	North			
Axial Load (kips)	3,362			
Shear Load (kips)	284			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	1.21	1,780,000	65	37,500
Pile #	All	1 and 4	1 and 4	1 and 4

Shear Load Direction	South			
Axial Load (kips)	3,362			
Shear Load (kips)	284			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	1.21	1,780,000	65	37,500
Pile #	All	5 and 8	5 and 8	5 and 8

25 Jessie Street			6			101.01				20
San Francisco, CA				3:-0*	-1-			- 3'-0"		-
Pile Response using Group v8	.0 Nor	th _								
KLW						Г	-			1.5
10/27/2017					2	L	3		-	·
Column 5	I	5-10*				Ç→Y Ž	-			3'-0"
Shear Load Direction	East		5		0	Ļ			•	
Axial Load (kips)	-1,245				_					
Shear Load (kips)	254									
	Deflection	Ber	nding Moment	:	Depth	to Maxi	mum		Shea	r
	(in)		(lb-in)		Mc	oment (ir	ר)		(lbs)	
	Y-Direction		Z-direction		Z-	directior	า		Y-Direc	tion
Maximum	1.17	1,080,000			53 3		35,20	00		
Pile #	All		4 and 8			4 and 8			4 and	8

Shear Load Direction	West			
Axial Load (kips)	-1,245			
Shear Load (kips)	254			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	1.17	1,080,000	53	35,200
Pile #	All	1 and 5	1 and 5	1 and 5

Shear Load Direction	North			
Axial Load (kips)	-1,586			
Shear Load (kips)	284			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	1.26	1,150,000	53	36,500
Pile #	All	1 and 4	1 and 4	1 and 4

Shear Load Direction	South			
Axial Load (kips)	-1,586			
Shear Load (kips)	284			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	1.26	1,150,000	53	36,500
Pile #	All	5 and 8	5 and 8	5 and 8

25 Jessie Street San Francisco, CA Pile Response using Group v8.0 KLW 10/6/2017

Column 15

Shear Load Direction

Axial Load (kips)

Shear Load (kips)	27	2		
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.04	83,600	48	3,100
Pile #	All	7	7	7

North

East

1,747

Shear Load Direction	West			
Axial Load (kips)	1,747			
Shear Load (kips)	27			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.04	83,600	48	3,100
Pile #	All	4	4	4

Shear Load Direction	North			
Axial Load (kips)	1,907			
Shear Load (kips)	284			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.90	1,320,000	65	32,400
Pile #	All	1 and 3	1 and 3	1 and 3

Shear Load Direction	South			
Axial Load (kips)	1,907			
Shear Load (kips)	284			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.90	1,320,000	65	32,400
Pile #	All	8 and 10	8 and 10	8 and 10

25 Jessie Street San Francisco, CA Pile Response using Group v8.0 KLW 10/6/2017

- 12'-6" -- 3'-0" -- 3.-0*--1-9-- 3'-0* -+ 1 2 3 4 6-0* 3'-0' 5 7 6 1 - 3'-0*-+ -3-0*--

Column 21

Shear Load Direction	East
Axial Load (kips)	1,389
Shear Load (kips)	22

North

	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.02	55,000	41	2,600
Pile #	All	5 and 7	5 and 7	5 and 7

Shear Load Direction	West			
Axial Load (kips)	1,389			
Shear Load (kips)	22			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.03	76,000	41	3,670
Pile #	All	1 and 4	1 and 4	1 and 4

Shear Load Direction	North			
Axial Load (kips)	1,023			
Shear Load (kips)	216			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.29	634,000	41	29,900
Pile #	5,6, 7	7	7	4 and 7

Shear Load Direction	South			
Axial Load (kips)	1,023			
Shear Load (kips)	216			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.29	634,000	41	29,900
Pile #	5,6, 7	5	5	1 and 5

- 12"-6" -- 3"-0" -1.9* - 3-0*-- 3'-0* -+ 1 2 3 4 6-0* 3'-0' 5 7 6 1 - 3'-0*---3-0*--

Column 51

Shear Load Direction	East
Axial Load (kips)	1,389
Shear Load (kips)	22

North

	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.02	55,000	41	2,600
Pile #	All	5 and 7	5 and 7	5 and 7

Shear Load Direction	West			
Axial Load (kips)	1,389			
Shear Load (kips)	22			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.03	76,000	41	3,670
Pile #	All	1 and 4	1 and 4	1 and 4

Shear Load Direction	North			
Axial Load (kips)	1,023			
Shear Load (kips)	216			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.29	634,000	41	29,900
Pile #	5,6, 7	7	7	4 and 7

Shear Load Direction	South			
Axial Load (kips)	1,023			
Shear Load (kips)	216			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.29	634,000	41	29,900
Pile #	5,6, 7	5	5	1 and 5

25 Jessie Street San Francisco, CA Pile Response using Group v8.0 KLW 10/6/2017

Column 60

Shear Load Direction

Axial Load (kips)

Shear Load (kips)	27	2		
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.04	83,600	48	3,100
Pile #	All	7	7	7

North

East

1,747

Shear Load Direction	West			
Axial Load (kips)	1,747			
Shear Load (kips)	27			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.04	83,600	48	3,100
Pile #	All	4	4	4

Shear Load Direction	North			
Axial Load (kips)	1,907			
Shear Load (kips)	284			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.90	1,320,000	65	32,400
Pile #	All	1 and 3	1 and 3	1 and 3

Shear Load Direction	South			
Axial Load (kips)	1,907			
Shear Load (kips)	284			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.90	1,320,000	65	32,400
Pile #	All	8 and 10	8 and 10	8 and 10

Shear Load Direction	West			
Axial Load (kips)	3,012			
Shear Load (kips)	254			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.363	808,000	41	35,800
Pile #	5, 6, and 7	5	5	1

Shear Load Direction	North			
Axial Load (kips)	3,050			
Shear Load (kips)	216			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.27	621,000	41	28,400
Pile #	All	1 and 4	1 and 4	1 and 4

Shear Load Direction	South			
Axial Load (kips)	3,050			
Shear Load (kips)	216			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.27	618,000	41	27,100
Pile #	All	5 and 7	5 and 7	5 and 7

25 Jessie Street 12-6"-San Francisco, CA North - 3'-0" --1-9----- 3.-0* -- 3'-0* -1-9"-Pile Response using Group v8.0 KLW 1 2 3 4 10/27/2017 6-0* Column 71 5 7 6 Shear Load Direction East Axial Load (kips) -1,343 1 ---3'-0°-3-0*-Shear Load (kips) 254 **Bending Moment** Deflection Depth to Maximum Shear (lb-in) Moment (in) (lbs) (in) Z-direction Y-Direction Z-direction Y-Direction Maximum 0.33 705,000 41 35,900 5, 6, and 7 Pile # 7 7 7

Shear Load Direction	West			
Axial Load (kips)	-1,343			
Shear Load (kips)	254			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.33	705,000	41	35,900
Pile #	5, 6, and 7	5	5	5

Shear Load Direction	North			
Axial Load (kips)	-1,396			
Shear Load (kips)	216			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.25	556,000	41	28,400
Pile #	All	1 and 4	1 and 4	1 and 4

Shear Load Direction	South			
Axial Load (kips)	-1,396			
Shear Load (kips)	216			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.25	546,000	41	27,700
Pile #	All	5 and 7	5 and 7	5 and 7

Shear Load Direction	West			
Axial Load (kips)	999			
Shear Load (kips)	254			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.35	753,000	41	35,600
Pile #	5, 6, and 7	5	5	5

Shear Load Direction	North			
Axial Load (kips)	1,328			
Shear Load (kips)	25			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.03	75,900	41	3,670
Pile #	All	1 and 4	1 and 4	1 and 4

Shear Load Direction	South			
Axial Load (kips)	1,328			
Shear Load (kips)	25			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.03	74,900	41	3,550
Pile #	All	5 and 7	5 and 7	5 and 7

Shear Load Direction	West			
Axial Load (kips)	995			
Shear Load (kips)	254			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.35	753,000	41	35,600
Pile #	5, 6, and 7	5	5	5

Shear Load Direction	North			
Axial Load (kips)	1,424			
Shear Load (kips)	29			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.03	76,100	41	3,670
Pile #	All	1 and 4	1 and 4	1 and 4

Shear Load Direction	South			
Axial Load (kips)	1,424			
Shear Load (kips)	29			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.03	72,600	41	3,430
Pile #	All	5 and 7	5 and 7	5 and 7

25 Jessie Street			17 01	
San Francisco, CA			3-0"	/-0"
Pile Response using Group v8	.0 Nor	th T		
KLW	1			1.5"
10/6/2017			2 3	
Column 75	I	5-107	ç→v 2	3-0,
Shear Load Direction	East			
Axial Load (kips)	3,123			
Shear Load (kips)	254			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.31	695,000	41	31,600
Pile #	All	4 and 8	4 and 8	4 and 8

Shear Load Direction	West			
Axial Load (kips)	3,123			
Shear Load (kips)	254			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.309	695,000	41	31,600
Pile #	All	1 and 5	1 and 5	1 and 5

Shear Load Direction	North			
Axial Load (kips)	3,362			
Shear Load (kips)	284			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.33	739,000	41	33,100
Pile #	All	1 and 4	1 and 4	1 and 4

Shear Load Direction	South			
Axial Load (kips)	3,362			
Shear Load (kips)	284			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.33	739,000	41	33,100
Pile #	All	5 and 8	5 and 8	5 and 8

25 Jessie Street					- 12.0*		-
San Francisco, CA				414	-3-0,	-3'-0"	-
Pile Response using Group v8	.0 Nor	th 🗌					
KLW	1						1.5
10/27/2017				-	3		
Column 75	I	5'-10'		6	Ç→Y Ž		3'-0"
Shear Load Direction	East						1.5
Axial Load (kips)	-1,245						
Shear Load (kips)	254						
	Deflection	Ben	ding Moment	Depth	to Maximum	Shea	ar
	(in)	(lb-in)		(lb-in) Moment (in)		(lbs)	
	Y-Direction	Z-direction		Z-direction		Y-Direc	tion
Maximum	0.29		626,000		41	31,700	
Pile #	All		4 and 8		4 and 8	4 and	8 1

Shear Load Direction	West			
Axial Load (kips)	-1,245			
Shear Load (kips)	254			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Y-Direction	Z-direction	Z-direction	Y-Direction
Maximum	0.29	626,000	41	31,700
Pile #	All	1 and 5	1 and 5	1 and 5

Shear Load Direction	North			
Axial Load (kips)	-1,586			
Shear Load (kips)	284			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.30	658,000	41	33,300
Pile #	All	1 and 4	1 and 4	1 and 4

Shear Load Direction	South			
Axial Load (kips)	-1,586			
Shear Load (kips)	284			
	Deflection	Bending Moment	Depth to Maximum	Shear
	(in)	(lb-in)	Moment (in)	(lbs)
	Z-Direction	Y-direction	Y-direction	Z-Direction
Maximum	0.30	658,000	41	33,300
Pile #	All	5 and 8	5 and 8	5 and 8

Column 3 - North-South Deflection

Figure B-1

Column 3 - North-South Deflection

Column 3 - West-East Deflection

3 of 4

Column 3 - West-East Deflection

Column 5 - North-South Deflection

1 of 4

Column 5 - North-South Deflection

2 of 4

Column 5 - West-East Deflection

3 of 4

Column 5 - West-East Deflection

Column 73 - North-South Deflection

Depth below top of pile (feet)

Column 73 - North-South Deflection

Column 73 - West-East Deflection

Depth below top of pile (feet)

Column 73 - West-East Deflection

Column 75 - North-South Deflection

1 of 4

Column 75 - North-South Deflection

Column 75 - West-East Deflection

Column 75 - West-East Deflection

